NOKIA

Tech Talk: Introduction
to Rust language

A systems programming language that runs blazingly
fast, prevents segfaults, and guarantees thread
safety

* Pierre-Henri Symoneaux
« 07-09-2017

1 © Nokia 2016 Public

The language in a few words

A low level language compiled to CPU instructions (no bytecode)

LLVM as the compiler backend. Supports many targets

A powerful and very strict compiler performing many checks for safety
Binaries are statically linked by default

No Garbage Collector

Major features are :

Zero-cost abstractions Pattern matching

Move semantic Type inference

Minimal runtime
Efficient C bindings

Guaranteed memory safety

Threads without data races
Trait-based generics

© Nokia 2016 Public

kE com NnoOoKIA

A bit of history

« Started as a personal project by Graydon Hoare in 2006 while working at Mozilla
» Mozilla started to contribute in 2009

 First official announcement made in 2010

» First alpharelease in 2012

» Samsung joined the community in 2013 (working on the Servo engine)

« Stable 1.0 release in May 2015

« Current release from September 2017 is 1.20.0

3 ©Nokia 2016 Public kE com NnoOoKIA

A growing popularity

« Ranked 40th on May 2017 Tiobe Index

» Rustlang’s GitHub page has around 1100 watchers, 21600 stars and 4000 forks

* Around 10000 libraries indexed on crates.io for a total of 150 000 000 downloads
« More and more influent adopters (see https://www.rust-lang.org/friends.html):

- Canonical, Chef, OVH, Dropbox, NPM, Samsung, Mozilla, Ghome, and more ...

» According to Stackoverflow’s 2017 developer survey:
- Rust is the Most Loved Language for the 29 year
- Rustis the 2" top paying technology worldwide

4 ©Nokia 2016 Public kE com NnoOoKIA

https://www.rust-lang.org/friends.html

Release channels

e Rust has 3 release channels
- Stable, Beta and Nightly

- Stable release happen every 6 weeks (usually on Thursday)

» The nightly release has unstable/experimental features not available in beta and stable
releases

- In the language syntax itself

- In the standard library

» This presentation is not about unstable and experimental features and is only based on
stable release 1.20.0

5 © Nokia 2016 Public kE com NnoOoKIA

The ecosystem and the community

* Rustup : the rust installer, can switch between stable, beta and nightly releases

« Cargo and crates.io : package/project manager, is to Rust what NPM is to node. js
* Rustfmt and clippy : tools for formatting and linting the code

» Racer : a tool used by editors for autocompletion

» Asetof very good documentations (standard library, books, guides)
- See https://doc.rust-lang.org/

The Rust Language book
The Unstable book

The Rustonomicon
» This week in Rust : a weekly blog about news from the community
« Code editors

- Atom, VSCode, Sublime Text, Eclipse, and more ... are well supported

6 © Nokia 2016 Public kE com NnoOoKIA

https://doc.rust-lang.org/

NOKIA

The Rust Language

Public

Basic features and syntax
Hello World !!!

In the file hello_world.rs, write

fn main() {

println!("Hello World !!!");

}

Compile by running rustc hello_world.rs

Run hello_world or hello_world.exe

8 © Nokia 2016 Public kE com NnoOoKIA

Basic features and syntax
Just to name a few of them
« A syntax similar to C with block delimited by curly brackets

Conditional control with keywords if, else, while, for, ...
The match keyword is similar to switch in C, with some enhancements
Primitive types like i32, i64, u32, ub4, ug, f32, f64

Native Unicode strings

Immutability by default

Enums

There’s no class, only structures
Methods can be defined for structures

Support pointers
Namespaces

Unit tests natively supported

© Nokia 2016

Public

kE com NnoOoKIA

Basic features and syntax
A short example

pub struct Counter {
cnt: u64

}

impl Counter {

pub fn new() -> Counter {
return Counter {
cnt: ©

};

pub fn get_value(&self) -> u6bd {
self.cnt

pub fn incr(&mut self) {
self.cnt += 1;

}

10 © Nokia 2016 Public

pub fn main() {
let mut counter = Counter::new();
println!("value = {}", counter.get_value());

counter.incr();
println!("value = {}", counter.get_value());

}

#[cfg(test)]
mod tests {
use super::Counter;

#[test]

fn it_works() {
let mut counter = Counter::new();
assert_eq! (counter.get _value(), 0);
counter.incr();
assert_eq! (counter.get _value(), 1);

Basic features and syntax
Embedded documentation

Rust support for embedded doctrings
A doctring starts with ///
Doctrings support Markdown syntax

Embedded Rust code examples can be
tested by compiling and running them

Generated HTML doc is well designed
and easy to browse

11 © Nokia 2016 Public

Struct bcom::Counter

pub struct Counter { /¥ fields omitted */ }

A simple counter
Methods

impl Counter

fn new() -» Counter

Creates a new counter initialized to 0

fn get_value(&self) -> ucd
Get the current counter value
fn incr(&mut self)

Increments the counter value

kE com NnoOoKIA

NOKIA

The Rust language

Advanced features

Public

Advanced features
A powerful syntax inspired by functional languages

e Closures

let array = [1, 2, 3, 4, 5];
let new_array : Vec<i32> = array.iter()

.map(|v| v*2)
.collect();
println!("New array = {:?}", new_array);

« Type inference

let new_array : Vec< > = array.iter().map(|v| v*2).collect(); let x: 132

let y = 12;

let new_array = array.iter().map(|v| v*2).collect::<Vec< >>();

« No NULL pointer, only Optional types

Enum std:u)ptlon:ﬂ)ptlon pub fn process(counter: Option<&mut Counter>) {

if let Some(cnt) = counter {

cnt.incr();

pub enum Option<T> {
None, ¥ process(None);
Some(T), process(Some(&mut counter));

}

13 © Nokia 2016 Public kE com NnoOoKIA

Advanced features
A powerful syntax inspired by functional languages

« Pattern matching and destructuring

pub enum Stuff {
Count(Counter),
Str(String),
Nothing

}

pub fn get _some_stuff(stuff: Stuff) -> String {
match stuff {
Stuff::Nothing => format!("Got nothing"),
Stuff::Str(s) => format!("Got a string: {}", s),
Stuff::Count(cnt) => format!("Got a count: {}", cnt.get _value())

let bl true;
let b2 false;
=> println!("Small"), let r = match (b1, b2) {
...15 => println!("Not so small: {}", e), (true, false) => "foo",
if e < @ => println!("Negative"), (false, true) => "bar",
_ => println!("Big") _ => "baz"

DY

)
)

14 © Nokia 2016 Public kE com NnoOoKIA

Advanced features
A powerful syntax inspired by functional languages

pub trait Talk {
fn say hello(&self);
fn say goodbye(&self);

« Trait-based genericity

pub struct French; pub struct English;

pub fn talk(talker: &Talk) {

impl Talk for French { impl Talk for English { talker.say hello();

fn say_hello(&self) {
println!("Bonjour");

}

fn say_goodbye(&self) {

fn say_hello(&self) {
println!("Hello");
}

fn say_goodbye(&self) {

talker.say goodbye();

println!("Au revoir"); println! ("Goodbye"); pub fn talk_no_cost<T: Talk>(talker: &T) {
} } talker.say hello();
talker.say_goodbye();

let en = English;
let fr French;
talk(&en);
talk_no_cost(&fr);

kE com NnoOoKIA

15 © Nokia 2016 Public

Advanced features
Error handling

16

No exceptions, error handling based on returned values
Standard library defines Result<T, E> which is returned by functions which may fail

pub enum Result<T, E> {
0k(T),

pub fn may_fail(fail: bool) -> Result<i32, String> {
if fail {
Err ("It failed".to_string())

Err(E),
} else {
0Ok(12)

}

The result must be checked by caller

let mut res: i32 = may_fail(true).expect("Function failed");
res = may_fail(false).unwrap_or(13);

The try! Macro or the ? operator can be used to propagate the error

pub fn may_fail2(fail: bool) -> Result<i32, String> { pub fn may_fail2(fail: bool) -> Result<i32, String> {
let res: 132 = may_fail(fail)?; let res: 132 = try!(may_fail(fail));

println!("Function did not fail"); println!("Function did not fail");
Ok(res) Ok(res)

© Nokia 2016 Public kE com NnoOoKIA

Advanced features
Powerful macros

» Macros let us extend syntax by manipulating the AST

» For example we could simplify commonly written code like

std::collections: :HashMap;
mut map = HashMap::new();

insert("foo", 1);
insert("bar", 2);

Ioldol 't map2 = map! by implementing a map! macro

macro_rules! map {
($($key:expr => $value:expr,)*)
{

let mut map = std::collections::HashMap: :new();

$(map.insert($key, $value);)*
map

17 © Nokia 2016 Public kE com NnoOoKIA

Advanced features
FFI: Simple and efficient C bindings

extern crate libc;
use libc::size t;

#tinclude <stdio.h>

#[repr(C)] #include <stdlib.h>

pub struct MyData {

id: u8 typedef struct my_data {

unsigned char id
} my_data;

}

size t my_c_function(*my_data data);

#[link(name = "mylib")]
extern {

fn my_c_function(data: *mut MyData) -> size_ t;

« Bindgen is a tool which generates Rust
bindings from C headers

19 © Nokia 2016 Public kE com NnoOoKIA

NOKIA

The Rust Language

The borrow checker

Public

The borrow checker
What is it

* One of the most important and powerful feature

« Check your code for a set of rules

» Checks are performed at compile time and has no runtime cost
» Prevents bad usage of memory

- Use after free

- Use after move
* Introduce notions of ownership, borrowing and lifetime
* You will love it, and you will hate it
« But hopefully, compiler errors are really friendly

21 © Nokia 2016 Public kE com NnoOoKIA

The borrow checker
Ownership

 Variable bindings have ownership of what they’re bound to

- Moving the value will transfer ownership, preventing the use after move

: use of moved value: “a’
--> src\main.rs:198:5

vec![1, 2, 3];

197

let b = a;

|

|

| - value moved here
198 | a.get(0);

I

: move occurs because “a’ has type “std::vec::Vec<i32>, which does not implement the "Copy™ trait

- Valid code would be

* Either use b instead of a = vec![1, 2, 3];
let b = a;

b.get(9);

let a vec![1, 2,
* Orcloneaintob let b = a.clone();

a.get(9);
b.get(9);

22 © Nokia 2016 Public

kE com NnoOoKIA

The borrow checker

Borrowing
» With ownership comes the borrowing let a = vec![1, 2, 3];
- Getting a reference (a pointer) to an existing binding let b = &a;
) . . a.get(9);
- Areference cannot outlive the value it points to b.get(0);

- Avariable can have many immutable borrowers but only one mutable borrower

- Cannot move a value while it is borrowed

let mut a = vec![1, 2, 3];
let b = &mut a;

a.push(9);

b.push(4);

let mut a = vec![1, 2, 3];
let b = &mut a;

a.get(9);

b.push(4);

: cannot borrow “a’ as immutable because it is also borrowed as mutable
--> src\main.rs:205:5

: cannot borrow “a’ as mutable more than once at a time
--> src\main.rs:206:5

let b = &mut a;
- first mutable borrow occurs here

let b = &mut a;

- mutable borrow occurs here
a.push(0);
b.push(4); b.push(4);
¥

- mutable borrow ends here

I I
I I
I I
I I a.get(0);
I I
I I
I I
I I

}

first borrow ends here

23 © Nokia 2016 Public kE com NnoOoKIA

The borrow checker
Lifetimes

e Each reference has an attach lifetime

« Most of the time it’s implicit, but sometimes it can (must) be explicit

struct MyStruct {
let b = { s: String
let a = vec![1, 2, 3]; }
&a

55

: "a does not live long enough
--> src\main.rs:213:5 fn get_string<'a>(val: &'a MyStruct) -> &'a String {
&val.s
&a }
- borrow occurs here

borrowed value needs to live until here struct Example<'a> {

ptr: &'a String
}

24 © Nokia 2016 Public kE com NnoOoKIA

NOKIA

The Rust language

Public

Memory management
RAIl and destructors

» No garbage collector - No GC pauses
« Memory management is based on scopes

- When a variable reaches end of scope its memory is freed

- If the variable still owns its value (the value has not been moved), and if it has a destructor, the
destructor is called

- A destructor is defined by deriving from the trait Drop

struct Example;

impl Drop for Example {
fn drop(&mut self) {
println!("Destructor called");

}

26 © Nokia 2016 Public kE com NnoOoKIA

Memory management
The heap vs the stack

e Data can be stored on the stack
pub fn fn_ptr(ptr: &Counter) {}

let cnt_stack = Counter::new();
fn_ptr(&cnt_stack);

e Or on the heap through the Box type

let cnt_heap = Box::new(Counter::new());
fn_ptr(&cnt_heap);

- Box:new() allocates memory on the heap
- While the destructor (dropf()) frees it

« Box<E> can be dereferenced to E thanks to Deref trait

let cnt_moved : Counter = *cnt_heap;

This moves the value out of the heap to the stack, freeing the allocated heap space
« Ref Counted (Rc) and Atomically Ref Counted (Arc) references are available is std lib

27 © Nokia 2016 Public kE com NnoOoKIA

Memory management
Unsafe code

Sometimes the compiler may not understand all the logic
» Pointer arithmetic
* Low level memory manipulation

» Foreign Function interfaces

Developers need a way to tell it « Hey, trust me on this » and deactivate some constraints

The unsafe keyword let us mark a block of code or a function as doing some unsafe things
* Anunsafe block can cause segfaults if not properly written
« Some functions are unsafe, and cannot be called outside of an unsafe block

» Extern functions are unsafe by definition

Raw pointers exists and have the exact same memory representation than references

* *mutTis the equivalent of &mut T
* *const Tis the equivalent of &T

» Converting from reference to raw pointer is safe, the other way is not

28 © Nokia 2016 Public kE com NnoOoKIA

Conclusion

29

Pros

An expressive language with little overhead

Fit for real-time applications development

Fit for embedded software development

Memory safety makes it a good candidate for critical applications
While it’s a bit hard to learn, it’s also a lot of fun

The Rust community is very welcoming and tolerant

Cons

The learning curve is quite steep
A majority of third-party libraries are still immature

A permanent fight against the compiler

© Nokia 2016 Public

kE com NnoOoKIA

NOKIA

pierre-henri.symoneaux@nokia.com

