
1 © Nokia 2016

Adopting DevOps in the
Telecom World
• Pierre-Henri SYMONEAUX / Erwan DUVAL

• 18-10-2016

2 © Nokia 2016

• A network core equipment

• High real time constraint

• Distributed system, running up to 50 chassis of 16 servers on biggest deployments

• Handles tera bytes of critical data

• More than 10 years of existence

• Millions of line of code

• Hundreds of developers around the world

• Thousands of test cases

• Has known people turnover and sometimes full teams renewal

• To avoid any retaliation, we’ll call it “T-GOE” or “This good old equipment”

Introducing the software uses as example
What are the characteristics of this software ?

3 © Nokia 2016

Once upon a time, in the telco industry
Simplified view of the good old manual process

Dev

Dev

Code repository

Release Manager

Feature test

System test

TestDev

Labs

1.
2.

3.

3.

Delivery &
Support
teams

Customer

Production

4. 5.

Feedback (~2 weeks)

Feedback (~1 month)

Feedback (~6 months)

4 © Nokia 2016

• Complex process which need to be masterized by peoples

• Tests are run in a shared lab with limited Hardware

➢ Installs are manual and take some times

➢ Testers need to wait for available Hardware

• Code integrations are scheduled (e.g. each 2 weeks)

• Deliveries to test teams are also scheduled (e.g. each
month)

• Feedback to developers from FT, ST, Release Manager,
delivery teams and customers is too slow

• Loss of agility

• Don’t even think about time to market

Any problem ?

5 © Nokia 2016

• Jenkins is used for

- Job execution

- Artifact publishing

• Gerrit is used for

- Code review

- Job triggering

• Openstack replaced
the hardware
infrastructure

Code review and continuous integration
Giving the feedback loop some steroids

Code
change

Code
Review

Code
Submitted

Review = +2
and

Verified = +1

Auto Build
&

UT

NO

YES

Verification report

Code

review

Push

patchset

Reviewers

Auto Build
&

UT

Delivery
to test
teams

FT

Invites at

least 1

ST

Enterprise cloud

6 © Nokia 2016

• The more you
automate the
more you can
do

• Build for
multiple
targets

• Generate
some Q&A
metrics

• Cannot miss a
step

Focus on Automatic build and UT process
Automating complex task

New code received

(Review or

submission)

GERRIT
Static code

analysis

Unit testing

Generate HTML
doc

Build linux
binary

Build windows
exe binary

Junit
tests

results

Cobertura
coverage

results

HTML
API

documentation

32bits
windows

executable

64bits
executable
for linux el6

Installation
packages

(setup/msi)

Installation
package

(RPM)

Code analysis
results

7 © Nokia 2016

• No more hardware labs

• No more fight against testers to
reserve labs resources

• No more manual testers. They
now write automated tests

• Complex distributed
infrastructures can now be easily
tested

FT & ST flow
Leverage the full power of the cloud

Jenkins
slave

Enterprise cloud

Download package
to test

1

Deploy dedicated tenant,
virtual networks & routers,
Virtual machines on the enterprise cloud

23
Execute automated

test campaign

VM

VM VM

VM

VMVM

Firewall

Delivery
server

8 © Nokia 2016

Once upon a time, in the telco industry
Simplified view of the good old manual process

Dev

Dev

Code repository

Code Review+
Build

Feature test

System test

TestDev

Labs

1.

3.

3.

Delivery &
Support
teams

Customer

Production

4. 5.

Feedback (~1-2 hours)

Feedback (~12 hours)

Feedback (~6 months)

9 © Nokia 2016

• DevOps is the contraction of Development and Operations

• It aims at establishing a culture and environment where
building, testing and releasing software can happen rapidly,
frequently, and more reliably

• Bring many advantages :

- significantly shorter time-to-market

- improved customer satisfaction

- better product quality

- more reliable releases

- improved productivity and efficiency

- increased ability to build the right product by fast
experimentation

Introducing devops

10 © Nokia 2016

• DevOps can create an infinite loop of
release and feedback for all your code
and deployment targets

• The process from the code modification
to the deployment is fully automated

• The microservices architectural style is
becoming the standard for building
continuously deployed systems

Introducing devops

11 © Nokia 2016

Moving toward NFV with
microservices

12 © Nokia 2016

Objectives and Drivers to Transition to Micro-Service Architecture
Enabling cloud optimized State-less VNF Architecture

Today

Lead time to deliver new features

Architecture still too monolithic

Tomorrow
Expected Benefit of

micro-services

Divide into smaller and simpler set of
independent services

Micro-services : developed and deployed independently

Evolution to highly scalable and
programmable network

Scale the services independently and without operations

Speed of Scalability constrained by
operational model

Deployment still linked to hardware, and scalability
tight heavy operations

13 © Nokia 2016

• Vertical slicing: enables vertical industry and
services

-> 5G architecture should be flexible

• Horizontal slicing: improves system capacity and
user experience.

-> 5G architecture should be scalable

5G programmable network
Network slicing for 5G

Micro-services architecture will enable reliable and scalable 5G mobile networks.

14 © Nokia 2016

Basically, the micro-services approach in a nutshell dictates that instead of having one giant code base
that all developers touch, which often becomes difficult and risky to manage, that there are numerous
smaller code bases managed by small and agile teams. The only dependency these code bases have on
one another is their APIs.

Micro-services architecture
Introduction

15 © Nokia 2016

Challenges: Time-to-market / Flexibility / Scalability
Micro-services architecture & Cloud are enablers for DevOps

3. Deploy

SyVe/Customer
Cloud

Service registry

Service B
Service C

Service A

2. Build

CI and Automated testing

1. Commit

Dev teams

16 © Nokia 2016

DevOpS
New Way of Working

Language Local Build Unit Test

Dev team #1 working on micro-service 1

Commit

Continuous Integration Deploy to test Deploy to production

Build and Test

Docker images

Service#1 run on container

Dev team #2 working on micro-service 2

Commit

Build and Test

Docker images

Service#2 run on container

Continuous Delivery

