Atelier professionnel :

Optimisation d’implantation d’une unité de méthanisation pour l’injection du biométhane dans le réseau de gaz naturel

12 AVRIL 2012
CHEF DE PROJET : BORET FLORIAN
BESNARD ANTOINE
BRUGIONI INGRID
IDROVO CARLOS
JUHEL NOLWENN
LECLEC’H SOLEN

SUIVI PÉDAGOGIQUE : LEPRINCE F.

Master 2 SIGAT - Université Rennes 2
Place du recteur Henri Le Moal – CS 24307
35043 Rennes Cedex
REMERCIEMENTS

Avant tout développement sur cet atelier, il nous apparaît opportun de commencer ce rapport par des remerciements à ceux qui nous ont beaucoup apporté au cours de ces trois mois.

Aussi nous remercions Thierry Bioteau, assistant ingénieur, ainsi que Faustine Laurent, doctorante, de l’Irstea de Rennes pour leur encadrement, leur soutien et surtout leur expertise sur la thématique.

Nous tenons également à remercier Frédéric Marchand, Chargé de mission au Pôle Energie – Climat – Eco-Construction au Pays de Fougères pour son accueil et son investissement dans ce projet.

Nous exprimons pour terminer notre gratitude à l’équipe enseignante du Master SIGAT, Florent Demoares, Erwan Quesseveur, François Leprince et Morgan Berger pour nous avoir beaucoup apporté en ayant su nous inculquer des méthodes de travail durant cette année universitaire et pour nous avoir soutenus au cours de cet atelier.
VIII. Table des tableaux ..46
IX. Bibliographie / Webographie ...47
X. Sigles ...49
XI. Annexes ..50
A. Application avec ArcGIS ..50
 1. Calcul du potentiel énergétique disponible sur le territoire – méthode sur ArcGis 10.0 ..50
 2. Calcul du potentiel énergétique disponible 1 Km autour du réseau de transport ..61
B. Application avec GRASS ..66
 1. Calcul du potentiel énergétique disponible sur le territoire – méthode manuelle ...66
 2. Calcul du potentiel énergétique disponible sur le territoire – méthode automatisée par script SHELL ...83
 3. Calcul du potentiel énergétique disponible 1 Km autour du réseau de transport – méthode manuelle ...85
 4. Calcul du potentiel énergétique disponible 1 Km autour du réseau de transport – méthode automatisée par script SHELL ..93
C. Méthodologie d'analyse réseau avec Network Analyst (ArcGIS) ...94
I. Introduction

La méthanisation est une filière de gestion des déchets organiques dont l’essor en France, dans un contexte de développement des énergies renouvelables, est actuellement important. La dégradation par des bactéries de déchets biodégradables produit un gaz riche en méthane et en CO₂, appelé biogaz, qui peut alors être valorisé en énergie. A l’heure actuelle, la voie majoritaire de valorisation du biogaz est la production combinée d’électricité et de chaleur dans un moteur de cogénération. Cependant, la publication récente, en novembre 2011, de décrets autorisant l’injection de biogaz dans les réseaux de distribution du gaz naturel ouvre la voie à de nouvelles perspectives. Dans un scénario d’injection, le biogaz est compressé et épuré pour satisfaire aux critères de qualité imposés par GrDF, puis injecté dans le réseau de gaz naturel en mélange au gaz d’origine fossile.
Cette solution de valorisation semble intéressante du fait qu’elle nécessite moins d’étapes intermédiaires de transformation de l’énergie entre le producteur de biogaz et le consommateur et donc moins de pertes d’énergie. Toutefois certaines contraintes locales sont à prendre en compte, liées notamment à la présence d’un réseau de distribution à proximité de l’unité de méthanisation et aux consommations de gaz naturel sur le territoire.

L’Institut National de Recherche en Sciences et Technologies pour l’Environnement et l’Agriculture (Irstea), anciennement Cemagref, est un organisme de recherche qui travaille sur les enjeux majeurs d’une agriculture responsable et de l’aménagement durable des territoires. A Rennes, dans le cadre de ses missions sur les procédés biologiques de valorisation des déchets, Irstea produit des connaissances sur les impacts environnementaux des procédés et filières de traitement tels que la méthanisation, dans le but d’aider les porteurs de projet et les décideurs en matière de gestion des déchets. Pour cela des outils d’évaluation environnementale tels que l’Analyse de Cycle de Vie (ACV) sont mis en œuvre. Cependant ces outils adoptent une démarche globale qui ne prend pas complètement en compte les aspects territoriaux, pourtant cruciaux dans le choix des systèmes de gestion des déchets, qui sont intimement liés à des problématiques locales. C’est pourquoi un projet a récemment été lancé par Irstea, portant sur l’apport des Systèmes d’Informations Géographiques (SIG) pour l’évaluation environnementale des unités de méthanisation territoriale. S’inscrivant dans un travail de thèse, ce projet vise à intégrer, grâce aux SIG, les paramètres spatiaux influant la performance technique et environnementale d’une installation de méthanisation.

Dans le cadre de ce projet, un Atelier Professionnel a été mené en partenariat entre Irstea et le Master 2 SIGAT de l’Université Rennes 2. Sur la base des travaux de recherche préliminaires réalisés à l’Irstea, l’objectif est d’adapter une méthodologie d’identification des zones préférentielles pour l’implantation d’une unité de méthanisation, et de mettre en œuvre cette méthodologie sur le territoire de Fougères. L’atelier a duré trois mois, de janvier à avril 2012, et a mobilisé six étudiants du Master 2 SIGAT.
II. Contexte du projet

A. Présentation de l’Irstea

1. Au niveau national

L’Institut National de Recherche en Sciences et Technologies pour l’Environnement et l’Agriculture (Irstea), anciennement Cemagref, fait parti des 8 établissements publics à caractère scientifique et technologique (EPST). Il est placé sous la double tutelle des ministères de la Recherche et de l’Agriculture.

Ses recherches sont centrées dans les domaines de l’aménagement et de la gestion durable des territoires, en particulier agricoles et naturels, et de leurs ressources. L’Irstea contribue aux recherches sur les thématiques suivantes:

- le traitement des interactions entre milieux naturels, zones agricoles et urbaines,
- la gestion de la ressource en eau, l’amélioration de la qualité des eaux et des milieux aquatiques autres que marins,
- la prévention, prévision et atténuation des risques liés à la pollution des écosystèmes, au cycle de l’eau et à la sécurité des ouvrages hydrauliques,
- la gestion et la valorisation des ressources naturelles et de la biodiversité aquatique et forestière,
- la connaissance de l’environnement par l’observation dans ses domaines de compétence,
- la conception et le développement de procédés et technologies liés en particulier au traitement des déchets et rejets, aux activités agricoles, forestières et agroalimentaires, et à l’aménagement des territoires.

L’Irstea en chiffres, c’est:

- 115 millions d’euros de budget annuel (en 2011)
- 3 départements de recherches (eau, écotechnologies et territoires)
- 20 unités de recherches
- 5 UMR
- environ 1600 employés
- répartis dans 9 centres de recherches et 2 antennes (Figure 1).

Chaque centre travaille sur des problématiques précises, par exemple, le centre de Rennes s’intéresse particulièrement aux équipements agroalimentaires et à la gestion des déchets.

1 http://www.irstea.fr/l Institut/presentation
2 http://www.irstea.fr/l institut/chiffres-cles
2. Au niveau régional

L’Irstea – Rennes articule ses activités autour de 2 domaines3 :
- la connaissance et l’amélioration de la qualité et de la sécurité des produits alimentaires, des procédés de transformation et plus généralement, la maîtrise des procédés industriels appliqués au secteur agro-alimentaire (IAA).
- la conception et le développement de procédés biologiques de traitement des déchets et effluents organiques (déchets municipaux, effluents d’industries agro-alimentaires, effluents d’élevage) ainsi que leur gestion.

Le site héberge 2 unités de recherches3 :
- « Gestion environnementale et traitement biologique des déchets (GERE) », dont les thématiques de recherche portent sur la conception et le développement de procédés biologiques de traitement des déchets et effluents organiques (déchets municipaux, effluents d’industries agroalimentaires, effluents d’élevage) ainsi que leur gestion.
- « Technologie des équipements agroalimentaires, hydrauliques et hydrologie (TERE) », qui se consacre à l’amélioration et à la maîtrise de la qualité des matières premières et des produits agroalimentaires lors de leur transformation et de leur conservation. Elle développe des connaissances et des méthodologies en mécanique des fluides (aéraulique) et pour la caractérisation non invasive des produits et procédés (RMN/IRM).

Au sein de l’unité GERE, l’équipe EPURE étudie les différents aspects de la gestion et le traitement des effluents d’élevage depuis leur production jusqu’à leur valorisation. C’est dans cette thématique que s’intègrera notre étude.

3 http://www.irstea.fr/l Institut/nos-centres/rennes
La description de l’activité de l’équipe EPURE telle qu’elle est réalisée sur le site internet de l’Irstea est décrite comme suit :

L’équipe EPURE étudie les différents aspects de la gestion des effluents d’élevage depuis leur production jusqu’à leur élimination ou valorisation. Les travaux engagés ont pour objectifs l’amélioration des filières et procédés existants et le développement de nouveaux procédés tout en respectant des critères de protection de l’environnement et de durabilité.

Les champs d’application de l’équipe sont le traitement et la valorisation de la matière organique, de l’azote et du phosphore. Les procédés développés peuvent être aérobies de type boues activées ou anaérobies de type méthanisation, accompagnés ou non de pré/post-traitements physico-chimiques.

La valorisation des effluents d’élevage est ainsi abordée sous ses différents aspects : production de biogaz, recyclage des nutriments, retour au sol des boues et digestats.

Les axes de recherche développés sont :
- la mesure et la maîtrise des émissions gazeuses de composés polluants dont l’ammoniac (NH₃), le méthane (CH₄), le protoxyde d’azote (N₂O), et l’hydrogène sulfuré (H₂S),
- le génie des procédés épuratoires et la modélisation (conception, développement, optimisation des procédés aérobies et anaérobies),
- la microbiologie (écologie microbienne des procédés épuratoires et aspects sanitaires de la gestion des déjections animales),
- la gestion territoriale des déchets et ressources organiques.

B. Contexte de l’étude

1. La méthanisation, qu’est ce que c’est ?

La méthanisation est un procédé de dégradation de la matière organique qui a lieu en l’absence d’oxygène. Cette dégradation, grâce à l’action de différentes bactéries ou micro-organismes, conduit à une production de biogaz (constitué principalement de méthane et de CO₂) et d’un résidu appelé digestat.

La matière organique, à l’origine de ce procédé, peut provenir de différentes sources comme les déchets collectifs (ordures ménagères, de cantines,…), les déchets agricoles (lisier, fumier,…), ou les déchets industriels (industries agro-alimentaire, stations d’épuration,…).
Le biogaz obtenu peut ensuite être valorisé de deux façons:

- par cogénération, où l’on va produire de l’électricité et/ou de la chaleur. La première est vendue à ÉdF, la seconde peut être valorisée aux abords de l’installation pour les habitations, bâtiments d’élevage, activités industrielles,…
- après épuration et compression, il devient du biométhane et peut ainsi être injecté dans le réseau de gaz naturel ou utilisé comme carburant.

A la différence de la cogénération, l’injection de gaz ne permet pas de traiter les problèmes d’excédents d’azote. En effet, avec une valorisation par cogénération, il est envisageable de sécher les digestats sur le site grâce à la chaleur valorisée afin de les exporter et donc diminuer ainsi la pression en azote sur le territoire. Un tel traitement du digestat (très énergivore) n’est pas réalisable si le biogaz est valorisé par injection dans le réseau, car il n’y a alors pas de chaleur produite sur le site.

Par contre, la voie de valorisation du biogaz par injection dans le réseau de gaz naturel offre d’autres avantages. Après purification, le biogaz obtenu est de qualité similaire au gaz naturel. Il permet ainsi son injection dans le réseau de distribution, ce qui signifie que le lieu de production du biogaz n’est pas nécessairement situé à proximité immédiate du lieu de consommation de cette énergie.

Figure 2 : Schéma général de la méthanisation

Par contre, la voie de valorisation du biogaz par injection dans le réseau de gaz naturel offre d’autres avantages. Après purification, le biogaz obtenu est de qualité similaire au gaz naturel. Il permet ainsi son injection dans le réseau de distribution, ce qui signifie que le lieu de production du biogaz n’est pas nécessairement situé à proximité immédiate du lieu de consommation de cette énergie.
2. Pourquoi notre étude ?

L’évolution amenant à notre étude est due à une nouvelle problématique qui a vu le jour suite aux changements du cadre juridique concernant le biogaz et son utilisation 7 :

- loi Grenelle 1 (23 juillet 2009 – article 19) : le biogaz n’est plus un simple produit issu du traitement des déchets, mais une énergie renouvelable à part entière (…)
- loi Grenelle 2 (12 juillet 2010 – article 92) instauration d’un tarif d’achat du biométhane dû aux producteurs par les fournisseurs de gaz naturel (…)
- textes réglementaires du 22 et 24 novembre 2011 : le biométhane issu de déchets d’origines agricoles, de déchets ménagers ou de déchets issus de l’industrie agroalimentaire, peut être injecté dans les réseaux de gaz naturel (…) sous réserve que la production de biométhane soit en adéquation avec les consommations de gaz naturel sur le réseau (…)

Dans un contexte où la méthanisation connaît un véritable essor en France, notamment parce qu’elle contribue à répondre aux objectifs fixés par les plans climat-énergie en termes de production d’énergie renouvelable, la réglementation encadre et encourage aujourd’hui l’injection dans le réseau de gaz naturel comme filière de valorisation du biogaz.

C. La méthanisation en France

L’injection de biométhane dans le réseau de gaz est autorisée depuis le 21 novembre 2011, par les décrets n° 2011-1594 (conditions de vente du biométhane aux fournisseurs de gaz naturel), n° 2011-1595 (compensation des charges de service public portant sur l’achat de biométhane injecté dans les réseaux de gaz naturel), n° 2011-1596 (garanties d’origine du biométhane injecté dans les réseaux de gaz naturel) et n° 2011-1597 (conditions de contractualisation entre producteurs de biométhane et fournisseurs de gaz naturel) 8. Ils ont été complétés par 4 arrêtés du 23 novembre 2011, dont un fixant la nature des intrants dans la production de biométhane pour l’injection dans les réseaux de gaz naturel.

De ce fait, en France, l’injection de biométhane d’origine agricole, dans le réseau GrDF, n’est pas encore appliquée à notre connaissance. La méthanisation se développe donc plutôt sur le principe de cogénération, principalement utilisée dans le milieu agricole « pour le développement de projets, dits territoriaux ou centralisés, qui permettent de mutualiser les installations de production 9. » Cependant, ces nouveaux décrets autorisant l’injection de biométhane dans le réseau de gaz naturel constituent une alternative possible à l’avenir.

7 http://www.injectionbiomethane.fr/
D’après l’ATEE (Association Technique Energie Environnement) :
« Une centaine d’installations de méthanisation d’effluents agricoles ont été construites dans les années 1970-1980, suite aux chocs pétroliers (d’après l’ADEME). Cependant, il ne subsiste en 2011 aucune de ces installations (...).

Il fallut attendre 2003 pour qu’un agriculteur indépendant, après de longues et fastidieuses démarches, réussisse à créer une installation de 21 kW pour traiter tous les effluents organiques de sa ferme. Une seconde installation à la ferme a suivi en 2003, puis une troisième en 2005, et depuis 2007, la filière de la méthanisation agricole suit un développement exponentiel. Depuis le début des années 2000, des projets territoriaux commencent à être réfléchis, mais ce n’est qu’en 2008 que le premier se concrétise. Depuis, ce type d’installation connaît un développement important. »

Figure 3 : Evolution du nombre d’installations de méthanisation agricole en France

En juillet 2011, on dénombre 48 installations opérationnelles, dont 7 projets territoriaux et 36 installations en construction (10 projets territoriaux).
La réforme sur l’injection du biométhane dans le réseau de gaz datant de novembre 2011, actuellement aucune installation de ce type ne le développe.
Voici deux exemples d’unités de méthanisation pour une production d’énergie en cogénération, créées dans un partenariat de plusieurs structures :

- en Mayenne, le GAEC (Groupement Agricole d’Exploitation en Commun) de l’Epine
 - Exploitation d’élevage bovins et volailles ainsi que cultures fourragères pouvant être utilisées comme substrats.
 - Partenariat avec quelques structures voisines

L’installation permet, après cogénération, de chauffer le bâtiment « volailles », le digesteur (maintenu à 37°C) et de produire de l’eau chaude (1000 L/jour) substituant ainsi 25 tonnes de gaz naturel. L’électricité produite est quant à elle vendue à EdF.

- dans les Côtes d’Armor, l’usine Geotexia
 - Créée dans une volonté d’améliorer la qualité de l’eau et de préserver une activité agricole locale (élevages porcins notamment) devant faire face à des obligations limitant les excédents structurels en azote et en phosphore

L’électricité produite est vendue à EdF, tandis que la chaleur est utilisée pour maintenir le digesteur en température et pour sécher le digestat afin de le commercialiser comme engrais solide.

10 ADEME :
http://www2.ademe.fr/servlet/getBin?name=CB1E6450282398E66F6096782794DC19_tomcatlocal1326445610494.pdf
D. Contexte du gaz français

1. Le marché du gaz naturel en France

Le marché du gaz naturel en France est organisé autour de six grands pôles : la production, le transport, les terminaux méthaniers, le stockage, la distribution et la commercialisation. Dans le cadre de notre étude, ce sont les réseaux de transport et de distribution qui nous intéressent particulièrement.

Ces deux réseaux sont gérés par des filiales de GdF-Suez (à l’exception du transport dans le Sud-ouest de la France, filiale de Total) : GRTgaz pour le transport et GrDF pour la distribution.

Le réseau de transport GRTgaz (en rouge sur la Figure 5) se décompose en 2 parties :

- le réseau principal ou réseau « grand transport » (ou encore réseau H) qui rejoint notamment les points frontières et les zones de stockage (6600 km).

- le réseau régional (ou réseau B) qui dessert les distributions publiques ou les plus gros consommateurs industriels (24500 km).

Le réseau de distribution est, quant à lui, plus confidentiel et dessert, en France en 2012, environ 11 millions de consommateurs sur un peu plus de 9 100 communes. Il représente une longueur totale de près de 200 000 km et relève de l’activité des services publics locaux même si la distribution est assurée par GrDF ou une autre entreprise locale de distribution (il en existe 24 en France mais elles sont très minoritaires).

« La structure et le fonctionnement du marché du gaz naturel en France », 2007

14 Commission de Régulation de l’Energie, 2012
2. L'injection dans le réseau

Alors que l’injection de biométhane se pratique depuis plusieurs années dans certains pays comme les Pays-Bas, la Suède, le Chili, les Etats-Unis,…, en France, l’injection dans le réseau est n’autorisée que depuis 200315.

\begin{itemize}
 \item La loi du 3 janvier 2003 autorise l’injection sous réserve qu’elle soit techniquement possible et que la sécurité - y compris sanitaire - soit assurée.
 \item En 2008, l’Agence Française de Sécurité Sanitaire de l’Environnement et du Travail (AFSSET) publie un rapport rendant un avis positif concernant le risque sanitaire lié à l’injection pour certains types de biogaz dans le réseau de distribution mené par GrDF9.
 \item Seul le biométhane issu de déchets industriels (hors agro-alimentaires) et de boues d’épurations ne peut être injecté.
\end{itemize}

Le biogaz épuré (biométhane) doit, pour être injecté, respecter quelques normes de qualité (notamment d’être similaire au gaz naturel) et la construction doit respecter certaines normes techniques. Cependant, l’injection peut se faire à la fois dans le réseau de transport ou dans le réseau de distribution15.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure6.png}
\caption{Schéma de principe de l’injection16}
\end{figure}

15 http://www.grdf.fr
16 http://www.grtgaz.com
E. Pays de Fougères

1. Sa situation

- **Au niveau démographique :**
Le pays de Fougères est composé de 58 communes, regroupant 76 517 habitants et réparties en cinq communautés de communes. Il s’agit d’un pays dynamique qui connaît une évolution positive de son nombre d’habitants mais dont la densité reste faible (75 hab/km²) et inférieure à la moyenne régionale.

- **Au niveau environnemental :**
Une grande partie de la SAU (Surface Agricole Utile) est consacrée à la surface herbagère (plus de 50% dans les cantons ruraux).
De manière générale, le patrimoine naturel du Pays lui confère une image forte que les acteurs reconnaissent et tentent de maintenir. Ainsi le territoire possède huit sites protégés, dont deux classés Natura 2000.

Aucun établissement n'est soumis à la taxe générale sur les activités polluantes (TGAP - Air) et la collecte sélective est presque généralisée, avec un réseau de déchetteries bien réparties sur le territoire, mais dont les capacités de traitement sont insuffisantes.

Cependant, la qualité de l’eau distribuée n’est pas satisfaisante voire préoccupante, du fait d’une pollution par les nitrates. La moitié du pays est en effet classée en Zone d’Excédent Structurel (ZES) avec une quantité totale d’azote d’origine animale épandue dépassant les 170 kg/h/an.

Voici la liste des cantons en zone d’excédent structurel (ZES) sur le Pays de Fougères :
- Fougères
- Fougères -Nord
- Fougères -Sud
- Louvigné-Du-Désert

Figure 7 : Cantons en Zone d’Excédent Structurel sur le territoire du Pays de Fougères (Révision 2009)

18 ZES : Cantons où la quantité totale d’azote produite par le cheptel est supérieure à 170 kg par hectare épandible et par an (c’est-à-dire où les possibilités d’égurgation par le sol et par les cultures sont dépassées).
- **Au niveau énergétique** :

La commune de Fougères est desservie en gaz naturel, tout comme 11 autres communes (Figure 8). Le territoire exploite la filière bois-énergie puisque deux chaufferies au bois existent. Un seul établissement est considéré comme « gros consommateur » d’électricité (plus de 16 GWh/an), situé à Saint-Brice-en-Cogles.

![Figure 8 : Communes du Pays de Fougères desservies en gaz naturel en 2012](image)

2. **Pourquoi ce choix ?**

Au niveau territorial, la production de biogaz et de biométhane, par méthanisation d’effluents d’élevage, a d’autres enjeux que de répondre aux Directives Gaz et Energies Renouvelables fixées par le Grenelle Environnement.

En effet, à l’échelle locale, c’est un moyen de valoriser les déchets organiques tout en agissant sur:

- la réduction des émissions gaz à effet de serre.
- le tissu d’acteurs (agriculteurs, industriels, pouvoirs publics,...) par un projet fédérateur.
- l’économie locale (gestion des déchets, création d’emplois, autonomie énergétique et maîtrise des coûts,...).

III. Méthodologie

A. Analyses préalables

La localisation des sites optimaux pour les installations de génération d’énergie est une tâche complexe qui implique à la fois des contraintes et des facteurs d’ordre environnementaux, sociaux et économiques. Des « modèles de pertinence de terrain » (Land Suitable Model) peuvent être élaborés en croisant des contraintes restrictives, limitant l’implantation, et des facteurs sélectifs, favorisant celle-ci (voir Figure 9). Les différentes couches de données géographiques ainsi obtenues sont manipulées mathématiquement dans un environnement SIG pour obtenir un indice de pertinence de la localisation.

Dans le cadre d’une étude pour l’Irstea, c’est de ce type de démarche générale dont s’est inspiré F.Boret pour déterminer les zones potentiellement favorables aux installations de méthanisation collectives dans le Pays de Fougères en 2011. Cette analyse a été reprise en l’adaptant au nouveau contexte de possibilité d’injection de biométhane dans le réseau et en affinant certains aspects méthodologiques. Les étapes principales restent les mêmes, mais la méthodologie a été adaptée le cas échéant (Figure 10).

Figure 9 : Procédures et résultats d’un LMS basé sur l’utilisation du SIG

22 J. Ma et al., 2005
1. Les zones d’exclusion

Elles sont identifiées en tenant compte des contraintes sanitaires et environnementales, établies dans le cadre réglementaire et juridique français pour la mise en place d’une unité de méthanisation, en particulier en ce qui concerne les Installations Classées pour la Protection de l’Environnement (ICPE). Les critères retenus, pour réaliser l’analyse multicritères des zones d’exclusion, ont été repris dans la présente étude (Boret, 2011) :

- distance aux habitations (50 mètres),
- distance aux captages en eau potable (AEP), réseau hydrographique (35 mètres) (en l’absence de données sur les périmètres de captages une valeur minimale de 35 mètres autour des points de captage a été retenue),
- zones d’intérêt environnemental (Natura 2000, ZNIEFF,…),
- sites géologiques (200 mètres),
- zones de protection du patrimoine (500 mètres),
- distance aux routes (5 mètres), afin de ne pas implanter une unité de méthanisation sur une route,
- les zones de pente supérieure à 10%.

La couche rasteur²⁴ des zones d’exclusion a donc été réutilisée (Figure 11).

²³ Boret F, 2011
²⁴ Modèle matriciel de représentation des données géographiques (grille ou matrice)
2. La répartition des substrats pouvant être collectés

Parmi les 10 catégories de substrats mobilisables identifiés pour la méthanisation, 7 seulement avaient été retenus pour des raisons techniques, de rendements ou bien encore parce qu’ils ne rentrent pas en concurrence avec l’alimentation animale (Boret, 2011) :

- boues de STation d’EPuration des eaux usées (STEP)
- résidus de culture
- déchets de restauration des cantines scolaires
- déchets de restauration des hôpitaux et maisons de retraite
- déchets des Industries Agro-Alimentaires (IAA)
- déchets verts via les déchetteries
- effluents d’élevage

Dans le cas de l’étude pour la réinjection du biométhane dans le réseau de gaz naturel, nous avons également exclu les boues de STEP, qui ne sont pas autorisées26.

25 Boret F, 2011
L'évaluation des potentiels énergétiques en tonnes équivalent pétrole (tep) de chacun d’eux, qui avait fait l’objet d’un travail antérieur réalisé par Oleksandr Tretyakov, a été maintenu (Tableau 1).

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Potentiel de ressource énergétique (tep/an)</th>
<th>Potentiel de ressource énergétique (GWh/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déchets verts amenés en déchetteries du Pays de Fougères</td>
<td>268</td>
<td>3,1</td>
</tr>
<tr>
<td>Déchets de restauration des écoles</td>
<td>40,7</td>
<td>0,5</td>
</tr>
<tr>
<td>Effluents d’élevage</td>
<td>248</td>
<td>288,4</td>
</tr>
<tr>
<td>Déchets de restauration des hôpitaux</td>
<td>21,8</td>
<td>0,3</td>
</tr>
<tr>
<td>Déchets d'IAA</td>
<td>1 161,4</td>
<td>13,5</td>
</tr>
<tr>
<td>Utilisation des résidus des cultures en 2009 (maïs grain uniquement)</td>
<td>10 369,1</td>
<td>120,6</td>
</tr>
</tbody>
</table>

Tableau 1 : Potentiel énergétique des substrats méthanisables dans un scénario de réinjection dans le réseau de gaz naturel

Les couches vectorielles avec les sources de ces différents types de substrat ont été reprises (Boret, 2011).

3. Analyse des distances maximales de collecte par type de substrat

Les rayons maximaux de collecte avaient été estimés en formulant l'hypothèse que le transport ne pouvait pas consommer plus de 2% du potentiel énergétique transporté par camion (en tep/tonne), de manière à limiter le transport et donc la consommation. Ces valeurs ont été reprises (Tableau 2).

<table>
<thead>
<tr>
<th>Type de substrat</th>
<th>Rayon maximal de collecte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fumier bovin</td>
<td>4,8 Km</td>
</tr>
<tr>
<td>Lisier porcin</td>
<td>1,4 Km</td>
</tr>
<tr>
<td>Ecoles</td>
<td>55,3 Km</td>
</tr>
<tr>
<td>Hôpitaux - Maisons de retraite</td>
<td>55,3 Km</td>
</tr>
<tr>
<td>IAA 1 (Graisses, déchets de viande)</td>
<td>49,5 Km</td>
</tr>
<tr>
<td>IAA 2 (Soies de porcs, mucus de porcs, pulpes, fumier d’abattoir)</td>
<td>12,3 Km</td>
</tr>
<tr>
<td>IAA 3 (Boues)</td>
<td>1,8 Km</td>
</tr>
<tr>
<td>Déchetteries</td>
<td>9,7 Km</td>
</tr>
<tr>
<td>Résidus de culture</td>
<td>55 Km</td>
</tr>
</tbody>
</table>

Tableau 2 : Distance maximale de collecte par type de substrat
B. Démarche de détermination de sites potentiels dans le cadre de l’injection du biométhane dans le réseau de gaz naturel

1. Analyse spatiale en mode rasteur

Maintenant que nous avons détaillé les éléments nécessaires pour réaliser nos analyses globales sur le territoire de Fougères, nous allons détailler nos travaux qui se basent sur les résultats de F.Boret en apportant des adaptations méthodologiques. Tout d’abord, une amélioration a été apportée afin de pondérer la valeur du potentiel énergétique en fonction de la distance au point de production du substrat. Au lieu d’attribuer le potentiel énergétique du point de substrat à un cercle ayant pour rayon la distance maximale lui correspondant par des méthodes de calculs de voisins (Figure 12), nous avons considéré que ce potentiel décroissait avec la distance.

Nous avons ainsi considéré que :
- le maximum du potentiel énergétique était situé au niveau du point de substrat ;
- à la distance maximum de collecte, ce potentiel énergétique n’était plus que de 50% de la valeur à la source.
- au-delà de la distance maximale, ce potentiel est nul.

Le choix de cette valeur à la distance maximale permet de maintenir un potentiel relativement élevé tant que le substrat vaut la peine d’être collecté malgré le coût de transport. La valeur de 50 % a été déterminée de manière arbitraire, mais cette proposition pourra être adaptée, lorsque le modèle sera affiné, en fonction de l’importance de certains types de substrat par exemple.

Afin d’appliquer la pondération au potentiel énergétique par type de substrat, nous avons procédé de la manière suivante :

27 Boret F, 2011
- calcul cumulé par voisinage de la valeur maximale du potentiel énergétique dans un rayon de distance de collecte autour de chaque point de substrat ;
- calcul d’une couche de distance euclidienne à partir de chaque point de substrat, ce qui permet de faire varier la valeur de chaque pixel en fonction de son éloignement de la source ;
- pondération inverse de cette distance afin d’avoir une valeur 1 au centre et de 0.5 à la distance maximale de collecte ;
- multiplication de cette couche de pondération avec la couche de potentiel énergétique maximum afin de tenir compte de la distance aux points sources de substrat.

Pour la pondération, nous avons appliqué un modèle de régression linéaire :

\[Y = a \times X + b \]

Où : Y = la valeur de pondération et X = la distance au point de substrat.

Pour déterminer les inconnues a et b, nous avons pris en compte que Y = 1 quand X = 0 et que Y = 0.5 quand X = D_{max} (distance maximale de collecte).

Nous obtenons finalement la formule suivante pour créer la couche de pondération inverse à la distance :

\[Y = \left(-0.5 / D_{max} \right) \times X + 1 \]

Cette analyse spatiale permet d’obtenir le potentiel énergétique par type de substrat, pondéré de façon inverse à la distance au point source.

![Diagramme de potentiel énergétique](image)

Figure 13 : Estimation du potentiel énergétique autour des points de substrats en utilisant la pondération à la distance

Note : Pour réaliser cette analyse nous avons choisi de travailler avec une résolution de 100 m dans le cadre de l’analyse raster ce qui semble être un bon compromis entre la précision de la pré-étude et les temps de traitements.
a) Application avec ArcGIS et Spatial Analyst

Les analyses préalables étant maintenant toutes exposées, nous allons expliquer de manière générale notre travail d’analyse spatiale sur l’ensemble du territoire avec l’outil ArcGIS. Comme il a été dit précédemment nous avons amélioré la méthode originelle en pondérant la distance de collecte. Pour cela, nous avons commencé par tester notre méthodologie de manière manuelle en exécutant chacune des fonctions d’analyse spatiale une à une. Nous avons ainsi vérifié dans la pratique que notre raisonnement était correct. Nous avons résumé les grandes étapes de l’analyse avec l’extension Spatial Analyst d’ArcGIS sous forme d’un schéma simplifié (Figure 14).

Cette méthodologie est ici présentée de manière simplifiée mais elle est plus largement détaillée en Annexe. Toutefois, nous allons rapidement détailler la démarche, en commençant par l’outil statistique de points qui permet de d’attribuer à un rayon donné la valeur de tep de chaque point et lorsque les cercles se croisent l’outil fait la somme des tep (Figure 12). Dans le même temps, on calcule la distance euclidienne entre les points de substrats puis la pondération à la distance grâce à la formule de régression linéaire. Cette pondération est pour terminer croisée au résultat obtenu avec l’outil statistique de points afin d’obtenir la répartition du potentiel énergétique total sur le territoire de Fougères (Figure 15)

De plus, elle a fait l’objet d’une automatisation avec Model Builder ce qui a permis d’enchaîner les analyses pour chacun des substrats et ainsi diminuer les temps de traitements.
La carte montre des disparités dans la répartition du potentiel énergétique sur le territoire de Fougères avec des valeurs allant d’environ 7 000 à 9 300 tep/an. En effet, on identifie bien la zone très urbanisée de Fougères ainsi que la forêt pour lesquelles le potentiel énergétique est faible car il y a peu de substrats collectés dans cette zone, ce qui explique cette zone au centre de la carte. De plus, on constate un effet de bord bien présent dû au manque de données sur les communes alentour de notre territoire « test », qu’il est important de notifier pour la bonne lecture de la carte.

a) Application avec GRASS

Parallèlement aux travaux réalisés sur ArcGIS nous avons travaillé sur la reproduction de la méthodologie avec des outils libres. Même si le nombre d’outils SIG libres ne cesse de croître notre choix s’est porté assez rapidement vers GRASS car il est sans aucun doute l’outil le plus adapté aux analyses spatiales en mode rasteur et est également très utilisé dans le domaine de la recherche.

Ensuite, il nous a fallu nous adapter aux spécificités de GRASS, en cherchant notamment des outils de traitements assez similaire à ceux utilisés dans ArcGIS ce qui ne fut pas une tâche facile au départ car une adaptation à GRASS nous a été nécessaire puisqu’il s’agissait d’un outil non manipulé dans le cadre de notre formation. De la même manière, un schéma simplifié des grandes étapes de la méthodologie appliquée avec l’outil GRASS a été élaboré, dans lequel on peut noter quelques différences avec l’arbre des traitements mise en place sur ArcGIS (Figure 16).
Il n’existe pas d’équivalent à l’outil « statistique de points » dans GRASS permettant de travailler directement à partir de données vecteurs. Il nous a donc fallu commencer par convertir les données vecteurs du substrat en rasteur avec une grille de 100 m. Puis, nous avons utilisé cette grille avec l’outil de voisinage « r.neighbors » permettant d’attribuer la valeur d’un point de substrat à un cercle de rayon défini et de sommer la valeur des cercles lorsqu’ils se croisent (Figure 12).

En parallèle, nous avons calculé la distance euclidienne entre les points de collecte avec la fonction r.grow.distance qui travaille elle aussi à partir du rasteur du substrat. Une fois ce rasteur de distance calculé nous l’avons pondéré par la distance en appliquant la formule citée précédemment dans le rapport :

\[Y = \left(-0.5 / D_{\text{max}} \right) \times X + 1 \]

Pour terminer nous avons croisé le rasteur de distance pondéré avec le rasteur de voisinage pour obtenir le résultat final représentant le potentiel énergétique disponible sur le territoire de Fougères.
Figure 17 : Résultat obtenu avec GRASS représentant la répartition du potentiel énergétique sur le territoire de Fougères

Le résultat obtenu est similaire quelque soit l’outil utilisé, avec quelques différences observées de temps de calcul.
IV. Démarche de détermination de sites potentiels dans le cadre de l’injection du biométhane dans le réseau de gaz naturel

A. Préalables

Nous allons dans cette partie développer notre méthodologie permettant d’optimiser la détermination de sites potentiels dans le cadre de l’injection du biométhane dans le réseau de gaz naturel. Au préalable il nous faut revenir sur quelques notions indispensables pour comprendre le fonctionnement d’un réseau de gaz naturel et des principes qui conditionnent l’injection.

• Le réseau de gaz naturel

Pour déterminer les sites potentiels dans le cadre de l’injection du biométhane dans le réseau de gaz naturel, il nous a fallu avant tout obtenir ce réseau sur le Pays de Fougères. Malheureusement, toutes nos prises de contacts avec les acteurs potentiellement détenteurs de la donnée ont échoué car cette donnée s’est avérée très sensible. Nous avons alors du modéliser un pseudo réseau de gaz, à partir du réseau autoroutier qui part de Rennes pour aller à Fougères en supposant que le réseau de gaz longe ce réseau autoroutier.

• L’équilibre entre consommation et production de biométhane

Une des conditions pour l’injection de biométhane dans le réseau de gaz naturel, est que la quantité injectée doit toujours être inférieure à la quantité consommée sur la zone desservie par le réseau en aval. Ceci s’explique assez simplement, car la distribution du gaz se fait à sens unique contrairement à d’autres types de réseau tel que l’eau qui se distribue au travers d’un réseau maillé. Il faut donc raisonner en termes de niveau de réseau et de zones de chalandise (Figure 18).
Par exemple :
- La production maximale P_1 pour une injection dans le niveau 1 doit être inférieure à la consommation de tout le réseau en aval (niveaux 2 et 3). On aura donc : $P_1 = P_{11}+P_{12}+P_{13}$
- La production maximale P_{11} pour une injection dans le niveau 2 doit être inférieure à la consommation de tout le réseau en aval (ici niveau 3). On aura donc : $P_{11} = P_{111}+P_{112}+P_{113}$

Plus on se trouve en aval dans réseau, plus il sera contraignant d’injecter car les consommations sont moindres.

Une autre difficulté pour équilibrer la quantité injectée et produite est la forte saisonnalité des consommations de gaz naturel. Celle-ci est essentiellement liée au chauffage (avec un facteur pouvant aller de 1 à 10 en bout de réseau entre la pleine période et la période creuse), et donc à un profil de consommateurs résidentiels ou tertiaires. En revanche, le secteur industriel peut atténuer fortement cet effet de saisonnalité s'il dispose de process alimentés en gaz naturel mais il faut veiller à ce que cette consommation industrielle quotidienne ne repose pas uniquement sur un seul industriel pour assurer la pérennité d'un projet de méthanisation avec injection (Figure 19), en cas d'abandon d'activité de la part de cet industriel.

28 Injection de biométhane dans les réseaux et distribution de gaz naturel – Formation BiogasMax – 31 Mars 2010

Premier scénario : La production de biométhane est supérieure à la consommation en période creuse de consommation, même s'il est possible de palier cette surconsommation par des procédés tel que le stockage, il vaut mieux éviter ce cas.

Second scénario : La production de biométhane est élevée en période de forte consommation et faible en période de basse consommation. Ce scénario est envisageable mais nécessiterait une modification du processus de méthanisation pour réduire la production aux périodes de faible consommation.

Troisième scénario : La production de biométhane se fait uniquement dans les périodes de forte consommation en gaz naturel et le reste du temps l’unité de méthanisation serait à l’arrêt.

Quatrième cas : La production de biométhane correspondrait à la consommation minimum d’une année ce qui veut dire que l’unité de méthanisation serait en fonctionnement constant. Ce cas est l’option la plus favorable.

Figure 19 : Équilibre entre consommation et production de biométhane

Pour faire face à des périodes d’impossibilité d’injection dans le réseau en cas de baisse de la consommation en aval (exemple du cas n°1), différentes techniques sont possibles (Figure 20).

Comme on peut le constater, pour des périodes importantes de non injection dans le réseau, la stratégie consiste essentiellement à jouer sur la zone de chalandise. Une autre façon est de se baser sur la consommation minimale de l’année afin d’être sûr de ne pas dépasser le seuil d’injection (voir 4ème scénario de la Figure 19).

- **Coût de raccordement**

Une autre contrainte pour le choix du lieu d’implantation de l’unité de méthanisation va être la distance au point d’injection dans le réseau, qui va impliquer des coûts plus importants avec l’éloignement (Figure 21)\(^3\).}

31 Source : www.injectionbiomethane.com

Figure 20 : Solutions techniques en fonction de la durée des périodes de non injection dans le réseau

Il faudra donc choisir une distance maximale qui soit un compromis entre le coût de raccordement et les possibilités de collecte de biométhane.

32 Injection de biogaz dans le réseau public de gaz naturel - BIOGAZMAX, Mars 2010 - http://www.biogasmax.fr/media/6_solagro_injection_051220400_1600_05012010.pdf
• **Le cas de Fougères**

Nous nous sommes heurtés lors de l’atelier au manque d’informations à plusieurs niveaux :

- Les données de consommation disponibles datent de 2005, époque à laquelle seule la commune de Fougères était desservie en gaz naturel ;
- La consommation s’élevait à 139 GWh/an pour les zones résidentielles, 52 GWh/an pour le tertiaire, 81 GWh/an pour l’industrie et 8 GWh/an pour l’agriculture ; (données de la plateforme Ener’Ges – Bretagne disponible également sur le site internet du Pays de Fougères)
- La production maximale qui avait été estimée lors de l’étude antérieure était d’environ 9 200 tep/an, ce qui équivaut à environ 107 GWh/an, avec un taux de conversion de : 1 Mwh = 0,086 tep et 1 kWh = 0,001 Mwh/an (Ministère de l’écologie, du développement durable, des transports et du logement).
- Nous ne disposons pas d’information sur le réseau de distribution dans la commune de Fougères, et donc nous ne pouvons pas estimer les consommations dans les ramifications d’ordre 2 ou plus.

• **Nos choix**

Compte-tenu de l’ensemble des limitations citées, en particulier en termes de précision de la donnée, nous avons émis l’hypothèse que l’injection sur le réseau de transport de Fougères pouvait être le scénario le plus pertinent à analyser. En effet, l’injection dans le réseau de gaz naturel est susceptible d’y être plus favorable en termes de capacité de consommation et d’amortissement de la saisonnalité par la présence de consommateurs industriels.

Dans la mesure où la connaissance du réseau de distribution et des consommations en aval sera plus fine, il sera possible d’affiner la méthode en analysant les cas d’injection à des niveaux de ramification supérieure, dans le réseau de distribution.

Cette réflexion d’injection dans le réseau de transport est notamment appuyé par Smyth et al., qui pensent que bien qu’il y ait peu d’expériences d’injection dans le réseau de transport en Europe, elle pourrait être intéressante dans la mesure où elle n’est pas limitée par la consommation, contrairement à l’injection dans le réseau de distribution. En effet, celle-ci ne doit pas excéder la demande, qui est à son minimum en été, l’utilisation première du gaz naturel étant le chauffage.

Le tracé du réseau de transport a été estimé à partir de la BD topo35, en utilisant le réseau routier comme référence pour le réseau de gaz.

Enfin, une distance maximale d’éloignement du réseau de transport a été fixée à 1 km. Pour cela, un buffer de 1 km a été créé sous SIG. La démarche étant identique, il serait possible d’étudier les résultats obtenus pour différentes distances.

Nous avons représenté la démarche méthodologique globale par un schéma simplifié (Figure 22).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{schema.png}
\caption{Eléments nécessaires pour déterminer les zones potentiellement favorables à l’implantation d’une unité de méthanisation pour l’injection du biométhane dans le réseau de gaz naturel}
\end{figure}

\textbf{B. Analyse spatiale en mode rasteur}

\textbf{1. Application avec ArcGIS et Spatial Analyst}

Maintenant que nous avons détaillé les éléments nécessaires à la détermination des secteurs potentiellement favorables une description de la méthodologie générale mise en place avec ArcGIS et l’extension Spatial Analyst est présentée en Figure 23.

35 Base de données vecteur de référence qui fournit une information en 3 dimensions à tous les acteurs de la gestion et de l’aménagement du territoire, pour analyser, situer et représenter tout type de données dans leur contexte géographique” (http://www.ign.fr)
La méthodologie permet de recentrer visuellement l’analyse autour du pseudo-réseau de gaz naturel.

Nous obtenons des valeurs comprises entre 7200 et 8900 Tep/an avec un buffer d’un kilomètre autour du pseudo-réseau de gaz naturel ce qui nous donnerait au mieux une production comprise entre 83 Gwh/an et 103 Gwh/an. On peu toutefois noter une zone optimale dans le dernier tiers du réseau de gaz en allant vers Fougères.

2. **Application avec GRASS**

La méthodologie mise en place avec GRASS (Figure 25) se rapproche fortement de celle d’ArcGIS et a été automatisée à l’aide d’un script SHELL.
Figure 25 : Méthodologie employée avec GRASS pour déterminer les secteurs favorables à l’implantation d’une unité de méthanisation dans le cas de l’injection du biométhane dans le réseau de gaz naturel

Figure 26 : Résultat obtenu avec GRASS permettant de visualiser les secteurs favorables à l’implantation d’une unité de méthanisation dans le cas de l’injection du biométhane dans le réseau de gaz naturel

C. **Analyse réseau avec Network Analyst**

1. **But**

L’analyse vise à établir le/les emplacement(s) optimal(aux) d’une unité de méthanisation dans un scénario d’injection de biométhane dans le réseau de gaz naturel et en prenant en compte le réseau routier pour la collecte des substrats.
2. Intérêt

La méthode d’analyse réseau présente plusieurs intérêts. Tout d’abord, elle offre la possibilité de prendre en compte la distance maximale de collecte en fonction du réseau routier en incluant également le poids (potentiel énergétique) de chacun des substrats. De plus, une méthode basée sur le réseau peut s’avérer utile pour obtenir une évaluation du potentiel final précise. En effet, l’analyse réseau permet, à l’inverse de l’analyse spatiale en mode rasteur, d’avoir une représentation ponctuelle et non pas zonale du site potentiel en tout point du territoire. Cet aspect est particulièrement pertinent pour les territoires vastes pour lesquels il pourrait être intéressant d’implanter plusieurs unités. En effet, les sites ne sont alors pas situés indépendamment les uns par rapport aux autres mais l’implantation d’une première unité influence le choix du site de la seconde et ainsi de suite. Le fait d’ exclure les sites potentiels de façon itérative permet d’identifier sur un même territoire plusieurs options possibles d’implantation, tout en gardant l’ensemble des substrats présents sur le territoire.

3. Données et paramètres.

- Les données à disposition
 - Le réseau routier.
 - Le pseudo réseau de gaz
 - La grille de points qui représentent les points potentiels d’implantation. Les points sont répartis de manière à recouvrir le territoire équitablement tout en excluant les zones non implantables. Ils correspondent aux nœuds d’une grille de mailles de dimension 200m sur 200m. Ce choix de résolution spatiale résulte d’un compromis entre temps de calcul et précision de la donnée. Ces substrats doivent être récupérés et acheminés jusqu’à l’usine de méthanisation.

- Les paramètres

Une pondération est nécessaire pour le traitement des données substrats. Elle permet d’exclure de l’analyse les points de substrats dont le potentiel énergétique est nul. Les distances maximales de collecte des substrats sont également prises en compte dans l’analyse.
Résultat de l’analyse

Figure 27 : Hiérarchie des sites potentiels pour l’implantation d’une unité de méthanisation dans le réseau de gaz naturel déterminée à l’aide du réseau routier

<table>
<thead>
<tr>
<th>Site potentiel n°1</th>
<th>8050 tep/an</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site potentiel n°2</td>
<td>7920 tep/an</td>
</tr>
<tr>
<td>Site potentiel n°3</td>
<td>7842 tep/an</td>
</tr>
</tbody>
</table>

Tableau 3 : Potentiel énergétique mobilisable pour chacun des sites déterminés

L’analyse réseau nous a ainsi permis d’identifier les 3 sites les plus favorables à l’injection de biométhane dans le réseau de gaz naturel. Chacun des sites est classé suivant son ordre de détermination. On constate que à l’instar de l’analyse rasteur, le dernier tiers du réseau de transport est le plus favorable à l’implantation d’une unité de méthanisation territoriale.
V. Bilan technique

A. Bilan sur la méthodologie

Les méthodologies qui ont été proposées ici sont deux démarches qui sont, certes, différentes, mais en même temps complémentaires. En effet, la méthode dite « rasteur » permet une vision globale de l’étude alors que la méthode « réseau » est plus ciblée.

D’un point de vue général, ce sont deux manières, incluant différents paramètres, permettant d’obtenir un résultat sur les possibilités d’implantation d’une unité de méthanisation. Cependant, la différence est notamment visible sur le résultat obtenu : en effet, par la première méthode (rasteur), on obtient un gradient de couleur définissant des zones plus ou moins favorables à l’implantation, alors qu’avec la seconde (réseau), le résultat est donné sous forme de points présentant une hiérarchie des sites optimums, ce qui laisse peut-être moins de marge de manœuvre aux décideurs.

Toutefois, ces différences font aussi la complémentarité des deux méthodes, car si la première fait ressortir les zones « idéales » d’implantation, la seconde permet un raisonnement inverse, c’est-à-dire de choisir un site et de l’interroger sur ses potentialités.

Chacune des méthodes a été automatisée, pour une utilisation plus efficace, par un « model builder » sur ArcGIS ou à l’aide d’un script Shell avec GRASS. Dans l’automatisation des traitements, plusieurs paramètres ont été définis pour permettre aux utilisateurs, même non initiés, d’ajuster l’analyse en fonction de leurs problématiques. Des paramètres tels que la distance, la pondération, la résolution (taille des cellules), … sont en effet paramétrables simplement avant de lancer le traitement.

Malgré les résultats satisfaisants de notre étude, nous avons rencontré quelques difficultés. La première fut de trouver une méthode pour pondérer la valeur de chaque substrat en fonction de la distance de collecte. Cette difficulté fut résolue en mettant en place un calcul de régression linéaire. La seconde difficulté fut d’obtenir les données liées au gaz, que ce soit pour la consommation ou pour le tracé du réseau de distribution. Ces données étant considérées comme sensibles, nous avons dû contourner le problème, en utilisant des données de consommation agrégées au niveau communal et datant de 2005 et en utilisant simplement le réseau de transport pour l’injection du biométhane.

Cependant, même si ces dernières difficultés n’ont pas été réellement résolues à l’issue de notre étude, les méthodes appliquées n’ont, elles, pas été impactées par ce défaut de données et elles restent applicables avec des données plus précises.
B. Bilan des outils

<table>
<thead>
<tr>
<th></th>
<th>Méthode rasteur avec l'extension Spatial Analyst d'ArcGIS</th>
<th>Méthode rasteur avec GRASS</th>
<th>Méthode d'analyse réseau avec l'extension Network Analyst d'ArcGIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avantages</td>
<td>- Temps de traitements</td>
<td>- Logiciel libre et gratuit</td>
<td>- Prise en compte de la pondération</td>
</tr>
<tr>
<td></td>
<td>- Automatisation avec Model Builder®</td>
<td>- Automatisation via un script SHELL</td>
<td>- Evaluation du potentiel final précise</td>
</tr>
<tr>
<td></td>
<td>- Résultat en tout point du territoire</td>
<td>- Résultat en tout point du territoire</td>
<td>- Représentation ponctuelle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Emplacements sélectionnés en fonction des emplacements précédents</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Prise en compte du réseau routier</td>
</tr>
<tr>
<td>Inconvénients</td>
<td>- Logiciel propriétaire</td>
<td>- Graphical Modeler pas suffisamment stable</td>
<td>- Logiciel propriétaire</td>
</tr>
<tr>
<td></td>
<td>- Distance « à vol d’oiseau »</td>
<td>- Temps de traitements</td>
<td>- Qualité du réseau routier nécessaire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Quelques bugs avec de gros fichiers vecteurs</td>
<td>- Choix du type et de la surface de la zone de restriction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Distance « à vol d’oiseau »</td>
<td>- Interprétation des points</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Traitements lourds et longs</td>
</tr>
<tr>
<td>Temps de traitements (Ordinateur de 2011)</td>
<td>Moins de 15 minutes</td>
<td>Environ 3h30</td>
<td>Environ 20 minutes</td>
</tr>
</tbody>
</table>

Tableau 4 : Bilan des outils utilisés
C. Bilan des résultats

D’après nos résultats il serait possible d’installer une unité de méthanisation territoriale pouvant collecter environ 8000 tep/an (d’après l’analyse réseau) afin d’injeter du biométhane dans le réseau de gaz naturel. Toutefois, ce chiffre de 8000 tep/an est à nuancer car il correspond au maximum de potentiel énergétique qu’il serait possible de collecter. Il ne faut pas oublier que l’acceptabilité sociale est un critère important à prendre en compte dans la réalisation d’un tel projet, en terme de lieu d’implantation et d’une plus ou moins grande acceptation pour les producteurs de substrats à confier le traitement de leurs produits/déchets à un prestataire extérieur. Nous allons néanmoins nous intéresser aux aspects économiques d’un tel projet, en considérant le volume maximum de substrats collectables. Ainsi, dans les paragraphes suivant, l’installation sera jugée réalisable ou non technique et une estimation de la rentabilité financière sera abordée.

• Au niveau de la consommation

Intéressons nous pour commencer à la consommation en gaz naturel du Pays de Fougères pour voir si une telle unité est techniquement réalisable. En reprenant les données de 2005, de la plateforme Energ’es qui correspondaient à la consommation de la ville de Fougères (la seule commune desservie en 2005), on peut vérifier si notre unité « optimale » est viable. Les chiffres à notre disposition nous donne les informations suivantes, la consommation s’élevait à 139 GWh/an pour zones résidentielles, 52 GWh/an pour le tertiaire, 81 GWh/an pour l’industrie et 8 GWh/an pour l’agriculture.

On peut donc considérer :
- que l’unité de méthanisation pourra produire au minimum 80GWh/an car la consommation industrielle est quotidienne et qu’elle est constante toute l’année
- que la consommation résidentielle et tertiaire serait également présente au quotidien en estimant qu’au moins 10% de la consommation annuelle pourrait être prise en compte soit environ 20 GWh/an (facteur pouvant aller de 1 à 10 entre la période hivernale et la période estivale)

Le calcul aboutit à une consommation minimale d’environ 100 GWh/an, ce qui est proche du potentiel énergétique maximum calculé précédemment correspondant à 8000 tep par an équivalent à 93 GWh/an.

• Au niveau environnemental

Actuellement, si on reprend notre scénario d’injection le long du pseudo-réseau de transport il serait possible d’installer une unité de méthanisation territoriale dans une zone hors ZES (< 170kg/h/an) sur le canton de Saint Aubin du Cormier. Il faudra bien faire attention à ce que la taille de l’unité de méthanisation ne fasse basculer ce canton en excédent azoté car une partie des substrats proviendraient de secteurs ZES. De plus, il ne faut pas oublier qu’il est difficile d’exporter les digestats avec une unité de méthanisation servant à l’injection du biométhane dans le réseau de gaz naturel car la chaleur ne pourrait pas être utilisée pour sécher le digestat.
• Au niveau économique

D’après nos calculs on pourrait traiter au maximum 1,02 tep/h soit une production en gaz de 1020 m³/h

\[
\frac{8000 \text{ tep/an}}{8000 \text{ h}} = 1 \text{ tep/h} \\
(1 \text{ tep/h}) \times 1000 = 1000 \text{ m}^3/\text{h}
\]

Figure 28 : Table de conversion entre unités énergétiques

Mais pour comprendre si une telle installation serait pertinente, nous nous sommes penchés sur la capacité minimale d’une unité de méthanisation dans un scénario d’injection de biométhane dans le réseau de gaz naturel.

La Commission de Régulation de l’Energie (CRE) a publié un “Avis sur le projet d’arrêté fixant les conditions d’achat du biométhane injecté dans les réseaux de gaz naturel” (Texte 118/168 de la délibération du 26 juillet 2011). Entre autre, elle a mené une analyse de rentabilité des conditions d’achat du biométhane à partir des tarifs d’achat proposés pour les installations de méthanisation agricole (Déchets collectivités, ménages ou restauration ; produits agriculture ou industrie agro-industrielle).

⇒ Elle considère que les tarifs proposés permettent d’atteindre une rentabilité avec rémunération normale.
⇒ Cependant, si la capacité des installations de méthanisation agricole est inférieure à 75 m³/h, les installations ne sont pas soutenables car les coûts de production sont trop élevés.

36 Ademe – La méthanisation à la ferme, http://www2.ademe.fr
Elle recommandait de favoriser la démarche de « projet de méthanisation territoriale », procédant par le regroupement de plusieurs exploitants agricoles porteurs de petits projets afin de ne construire qu’un seul digesteur de plus grande taille (…) du fait des économies d’échelle ». Pour cela elle proposait « un tarif plus incitatif pour des installations de taille moyenne ».

Les préconisations faites par le CRE ont été reprises dans un Arrêté du 23 novembre 2011 fixant les conditions d’achat du biométhane injecté dans les réseaux de gaz naturel (Texte 39/168) qui sont repris dans le Tableau 539 qui nous donne les tarifs de base d’achat du biométhane. De plus, à ces tarifs de base il peut s’ajouter une prime en fonction pour les intrants suivants : déchets ou résidus provenant de l'agriculture, de la sylviculture, de l'industrie agroalimentaire ou des autres agro-industries.

<table>
<thead>
<tr>
<th>CAPACITÉ MAXIMALE de production</th>
<th>Tarif (en €/kWh PCS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inférieure ou égale à 50 m³/h</td>
<td>0,5</td>
</tr>
<tr>
<td>Comprise entre 50 et 100 m³/h</td>
<td>Interpolation linéaire entre 0,5 et 0,65</td>
</tr>
<tr>
<td>Comprise entre 100 et 150 m³/h</td>
<td>Interpolation linéaire entre 0,65 et 0,8</td>
</tr>
<tr>
<td>Comprise entre 150 et 200 m³/h</td>
<td>Interpolation linéaire entre 0,8 et 0,9</td>
</tr>
<tr>
<td>Comprise entre 200 et 250 m³/h</td>
<td>Interpolation linéaire entre 0,9 et 1</td>
</tr>
<tr>
<td>Comprise entre 250 et 300 m³/h</td>
<td>Interpolation linéaire entre 1 et 1,1</td>
</tr>
<tr>
<td>Comprise entre 300 et 350 m³/h</td>
<td>Interpolation linéaire entre 1,1 et 1,2</td>
</tr>
<tr>
<td>Supérieure ou égale à 350 m³/h</td>
<td>6,4</td>
</tr>
</tbody>
</table>

Tableau 5 : Tarifs de base d’achat du biométhane

En reprenant ces chiffres de base, on peut calculer le gain possible en vendant le biométhane. Par exemple avec une consommation 8000 tep/an de substrats on aurait une production de 93 000 000 kWh/an (93 GWh/an), soit un gain horaire de 7,4€.

Pour terminer, il est intéressant de savoir que la consommation énergétique moyenne d’un habitant est de 3,97 tep/an. Cela voudrait donc dire qu’avec une unité de méthanisation capable de valoriser les 8000 tep/an potentiellement mobilisables sur le Pays de Fougères nous serions en mesure d’absorber la consommation de près de 2000 habitants, soit 2,5% de la population de ce territoire.

40 International Energy Agency, Key World Energy Statistics 2011
D. CONCLUSION ET PERSPECTIVES

L’apparition de nouveaux décrets autorisant l’injection du biométhane dans le réseau de gaz naturel a permis d’ouvrir de nouvelles perspectives pour la méthanisation. En effet, cette évolution pourrait permettre de pallier en partie la dépendance énergétique en gaz de la France, en développant des unités de méthanisation territoriales.

Pour cela, notre travail a permis d’observer que ces unités devraient être implantées plutôt à proximité du réseau de transport pour être certain que la production en biométhane soit inférieure à la consommation en période estivale, correspondant à la période creuse. Il se pourrait, en effet, que le réseau de distribution soit moins apte à recevoir d’importants volumes de biométhane. Il faudrait cependant vérifier ces éléments avec des données de consommation plus fines. Malheureusement, nous n’avons pas réussi à obtenir des informations précises sur le réseau de gaz naturel auprès des sociétés gérantes.

La méthodologie mise en place dans le cadre de ce projet montre que les outils d’analyse spatiale et d’analyse réseau sont bien complémentaires pour déterminer les secteurs potentiellement favorables dans le cadre d’une pré-étude. Ils permettent notamment de chiffrer le potentiel énergétique mobilisable à différents points du territoire afin de faciliter l’aide à la décision. Cependant, d’autres critères devront être pris en compte dans une étape postérieure tels que l’acceptabilité, le choix du mélange de substrat, l’investissement financier,…

A l’avenir, il serait également important de prendre en compte les ZES dans l’analyse des zones potentiellement favorables à l’implantation d’une unité de méthanisation pour l’injection du biométhane afin d’éviter les problèmes d’excédents structurels azotés en cas d’importation de substrats. Pour étudier ce problème de la réutilisation des digestats, les outils SIG couplés à une analyse du cycle de vie (ACV) pourraient servir à diminuer les impacts sur le territoire.

Dans la continuité de notre travail, il serait intéressant d’utiliser un outil libre pour l’analyse réseau afin que la méthodologie soit accessible sans investissements importants. Un autre aspect à prendre en compte sera l’évolution du réseau et des consommations sur le territoire de Fougères. Par ailleurs, il faudrait tester notre méthodologie sur une nouvelle zone « test » afin de voir si elle est reproductible ou si elle doit être adaptée en modifiant les différents paramètres (distance au réseau, substrats, distance de collecte,…).

Pour terminer, comme en France il n’existe pas encore d’unités de méthanisation permettant l’injection du biométhane dans le réseau de gaz naturel et traitant une grande quantité de substrats, il sera important de suivre leur fonctionnement tant au niveau de la collecte des substrats qu’au niveau de leur acceptabilité.
VI. Bilan de l’étude menée pour l’Irstea de Rennes

Cette étude menée avec l’Irstea de Rennes, nous a véritablement mis en situation professionnelle. Pour cela, nous avons commencé par nous imprégner du sujet de la méthanisation, avec l’aide de F. Laurent et T. Bioteau, les commanditaires, qui ont su nous donner tous les éléments nécessaires pour bien comprendre le contexte qui avait récemment évolué.

En plus des commanditaires, nous avons échangé avec d’autres organismes et collectivités pour le bon déroulement du projet, comme par exemple le Pays de Fougères. Cependant, il n’a pas toujours été facile d’obtenir des informations sur des données dites « sensibles » autour du réseau de gaz naturel et de la consommation par les gestionnaires du réseau.

Toutefois, l’étude nous a quand même permis de développer une méthodologie afin d’aider au développement de l’injection du biométhane dans le réseau de gaz naturel. Pour cela, nous avons pu mettre en application les connaissances acquises au cours de cette année universitaire, aussi bien en gestion de projet qu’en traitements géomatiques.

Pour atteindre nos objectifs dans les délais impartis, nous nous sommes organisés dès le départ en nous séparant les tâches tout au long des 3 mois de l’étude, pour valoriser au mieux le temps disponible. Cette répartition peut induire une certaine frustration, en ne participant pas à toutes les étapes du projet.

Pour terminer, nous sommes très heureux d’avoir pu réalisé cette étude et celle-ci restera pour nous une référence au moment où nous commençons à entrer dans la vie active.
VII. Table des figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>répartition des centres et antennes IRSTEA en France</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Schéma général de la méthanisation</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Evolution du nombre d'installations opérationnelles de méthanisation agricole en France</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Carte des installations de méthanisation construites (à la ferme et centralisées) en novembre 2011</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>Carte du réseau de transport de gaz en France</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Schéma de principe de l'injection</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>Cantons en Zone d'Excédent Structurel sur le territoire du Pays de Fougères (Révision 2009)</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Communes du Pays de Fougères desservies en gaz naturel en 2012</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>Procédures et résultats d’un LMS basé sur l’utilisation du SIG</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>Etapes pour déterminer les zones potentiellement favorables à l’implantation d’une unité de méthanisation</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>Résultat de l’analyse multicritères sur le territoire du Pays de Fougères</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>Estimation du potentiel énergétique autour des points de substrats</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>Estimation du potentiel énergétique autour des points de substrats en utilisant la pondération à la distance</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>Méthodologie appliquée sur ArcGIS pour pondérer le potentiel énergétique avec la distance de collecte</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>Résultat obtenu avec ArcGIS représentant la répartition du potentiel énergétique total sur le territoire de Fougères</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>Méthodologie appliquée sur GRASS pour calculer la répartition du potentiel énergétique de manière globale</td>
<td>26</td>
</tr>
<tr>
<td>17</td>
<td>Résultat obtenu avec GRASS représentant la répartition du potentiel énergétique sur le territoire de Fougères</td>
<td>27</td>
</tr>
<tr>
<td>18</td>
<td>Zones de chalandise du réseau de gaz</td>
<td>29</td>
</tr>
<tr>
<td>19</td>
<td>Equilibre entre consommation et production de biométhane</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>Solutions techniques en fonction de la durée des périodes de non injection dans le réseau</td>
<td>31</td>
</tr>
<tr>
<td>21</td>
<td>Coûts de raccordement au réseau pour l’injection de biométhane</td>
<td>31</td>
</tr>
<tr>
<td>22</td>
<td>Eléments nécessaires pour déterminer les zones potentiellement favorables à l’implantation d’une unité de méthanisation pour l’injection du biométhane dans le réseau de gaz naturel</td>
<td>33</td>
</tr>
<tr>
<td>23</td>
<td>Méthodologie appliquée sur ArcGIS pour déterminer les secteurs favorables à l’implantation d’une unité de méthanisation dans le cas de l’injection du biométhane dans le réseau de gaz naturel</td>
<td>34</td>
</tr>
<tr>
<td>24</td>
<td>Résultat obtenu avec ArcGIS permettant de visualiser les secteurs favorables à l’implantation d’une unité de méthanisation dans le cas de l’injection du biométhane dans le réseau de gaz naturel</td>
<td>34</td>
</tr>
</tbody>
</table>
Figure 25 : Méthodologie employée avec GRASS pour déterminer les secteurs favorables à l’implantation d’une unité de méthanisation dans le cas de l’injection du biométhane dans le réseau de gaz naturel………..35
Figure 26 : Résultat obtenu avec GRASS permettant de visualiser les secteurs favorables à l’implantation d’une unité de méthanisation dans le cas de l’injection du biométhane dans le réseau de gaz naturel………..35
Figure 27 : Table de conversion entre unités énergétiques…………………………………………………41

VIII. Table des tableaux

Tableau 1 : Potentiel énergétique des substrats méthanisables dans un scénario de réinjection dans le réseau de gaz naturel……21
Tableau 2 : Distance maximale de collecte par type de substrat…………………………………………21
Tableau 3 : Bilan des outils utilisés………………………………………………………………………………39
Tableau 4 : Tarifs de base d’achat du biométhane…………………………………………………………..42
IX. Bibliographie / Webographie

Arifa Sultana, Amit Kumar, Optimal siting and size of bioenergy facilities using geographic information system In: Bioresource Technology 94 (2012) 192–201

Steve Dagnall, Jon Hill, David Pegg, Resource mapping and analysis of farm livestock manures - assessing the opportunities for biomass-to-energy schemes In: Bioresource Technology 71 (2000) 225-234

X. Sigles

<table>
<thead>
<tr>
<th>Sigle</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACV</td>
<td>Analyse du Cycle de Vie</td>
</tr>
<tr>
<td>ADEME</td>
<td>Agence de l'Environnement et de la Maîtrise de l'Energie</td>
</tr>
<tr>
<td>AFSSET</td>
<td>Agence Française de Sécurité Sanitaire de l'Environnement et du Travail</td>
</tr>
<tr>
<td>ATEE</td>
<td>Association Technique Energie Environnement</td>
</tr>
<tr>
<td>EdF</td>
<td>Électricité de France</td>
</tr>
<tr>
<td>GdF</td>
<td>Gaz de France</td>
</tr>
<tr>
<td>GrDF</td>
<td>Gaz réseau Distribution France</td>
</tr>
<tr>
<td>GRTgaz</td>
<td>Gestionnaire du réseau de transport de gaz</td>
</tr>
<tr>
<td>IRSTEA</td>
<td>Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture</td>
</tr>
<tr>
<td>ISDNS</td>
<td>Installation de Stockage des Déchets Non Dangereux</td>
</tr>
<tr>
<td>SAU</td>
<td>Surface Agricole Utile</td>
</tr>
<tr>
<td>TGAP</td>
<td>Taxe générale sur les activités polluantes</td>
</tr>
<tr>
<td>UMR</td>
<td>Unité Mixte de Recherche</td>
</tr>
</tbody>
</table>
XI. Annexes

A. Application avec ArcGIS

1. Calcul du potentiel énergétique disponible sur le territoire – méthode sur ArcGis 10.0

1. Etapes préliminaires

Avant de commencer, il est toujours recommandé d’analyser les données disponibles. En premier lieu, on vérifie que toutes les couches à utiliser possèdent un champ qui indique la quantité énergétique (TEP) et la distance maximale pour aller chercher ce substrat (DISTANCE M).

Modifications des tables :
- Dans la couche de cultures, on ne va considérer que les cultures de maïs qui sont les seules intéressantes pour leur potentiel énergétique.
- Pour les déchèteries, on ne considère que celles ayant une valeur de TEP supérieure à 0. On crée alors une nouvelle couche avec seulement les 7 déchèteries ayant une valeur valide.
a - Paramètres de départ

- Lancer ArcMap

- Sur l'onglet ArcCatalog (ou ArcToolbox) on crée une nouvelle boîte à outils "toolbox", dans laquelle on va créer un nouveau modèle.

- Définition des propriétés du modèle : on peut aller dans le Menu Principal --> Modèle --> Propriétés du modèle (ou clic droit sur le modèle).
- On doit ensuite définir l'espace de travail, où l'on va enregistrer nos résultats (scratch workspace) ainsi que l'étendue ("extent") car l'on veut que tous les traitements soient faits sur le même territoire, dans notre cas, ce sera la couche du pays de Fougères.
b – Création du modèle

On commence à dessiner le modèle sur ArcGIS.

Dans cette partie, nous expliquerons la méthode sur un seul type de substrat, les cultures de maïs.

Cependant, la procédure devra être répétée avec les autres substrats.

A droite se trouve une vision générale du modèle par substrat.

NOTE: À la fin, après avoir fait cette analyse pour les 9 types de substrats, on additionne les résultats pour avoir la quantité de TEP totale (voir à droite en bas)
c – Statistique de points

Cet outil permet d'estimer la quantité potentielle de TEP par substrat que l'on peut récupérer dans chaque cellule du territoire.

Cet outil additionne le potentiel de TEP de chaque infrastructure productrice de substrat qui se trouve à une certaine distance de la cellule en question. Pour les cultures de maïs par exemple, la distance maximale de collecte est de 50 000 mètres.

- On sélectionne la couche à analyser et on choisit le champ qui contient la valeur de TEP. On peut renseigner les autres paramètres en créant des variables.

- Pour cela, on fait un clic droit sur l'outil utilisé et on demande de « générer une variable ». Cette variable apparaîtra en bleu clair.
- On utilise les variables non seulement pour éviter de taper à chaque fois les paramètres de chaque outil, mais également pour permettre à l'utilisateur de changer les valeurs si nécessaire.
- Pour l'outil de statistiques de point, on a ajouté 3 variables (ces options pourront être changées par l'utilisateur en cas de nécessité):

 • Le type de voisinage (Neighborhood) avec l'option "Cercle", la distance maximale de collecte (dans radius).

 • On a défini la taille de la cellule à 100 mètres.

 • Pour l'opération statistique à réaliser, on a choisis l'addition "Sum".
d - Distance Euclidienne :

On calcule la distance euclidienne (en mètres) pour chaque infrastructure de production de substrat. L'outil de distance euclidienne d'ArcGIS va donner à chaque pixel la distance en mètres par rapport à l'infrastructure en question (exemple: les cultures de maïs).
e- Régession linéaire :

Après, on veut que la valeur de TEP estimée par la statistique de points soit attribuée, à 100%, aux pixels qui se trouve à une distance de 0 mètres d’une infrastructure (ex: déchèterie). Par contre, les cellules qui se trouvent à la limite de la distance maximale de chaque substrat recevront seulement 50 % de cette valeur.
De cette façon on applique une formule de régression linéaire inverse afin de donner la valeur 0,5 pour la distance maximale et 1 pour la distance de 0 mètre et qu’entre les deux, la diminution soit croissante.
f- Multiplication de la statistique de points et la distance re-classifiée :

On utilise ensuite, un autre outil : "rasteur calculator" pour multiplier les résultats de la statistiques de points et la distance euclidienne re-classifiée.

Au moment de multiplier les résultats de la statistique de points (TEP) avec la distance ré-classifiée, on gardera une valeur supérieure de TEP seulement dans les cellules proches des infrastructures existantes (distance 0 mètre). La valeur de TEP diminuera quand cette distance augmente jusqu’à arriver à la distance maximale, où la valeur de TEP attribuée sera seulement de 50% de la statistique de points.
Afin d'améliorer les calculs suivants, au résultat précédent, on va remplacer les valeurs « Null » par la valeur de TEP de 0.
f- Calcul total du potentiel énergétique sur le territoire de Fougères :

Une fois calculé la quantité de TEP disponible pour chaque type de substrat, il faut calculer le potentiel total de TEP dans tout le territoire. Pour faire cela, on utilise de nouveau « rasteur calculator » dans lequel on réalise la somme de tous les résultats obtenus.
2. Calcul du potentiel énergétique disponible 1 Km autour du réseau de transport

On souhaite définir le site récoltant le maximum de potentiel énergétique à proximité du réseau, pour une injection moins contraignante.

On superpose sur le résultat de la 1ère partie (cumul du potentiel énergétique disponible), le réseau de transport de gaz.

Au vu des contraintes techniques de l’injection, on a déterminé une zone maximale d’implantation à 1km autour du réseau.
Pour représenter cette zone, on crée un buffer.
On remarque qu’une petite partie du buffer réalisé est hors de notre zone d’étude (pays de Fougères).
On va donc, avec l’outil « clip », enlever cette zone en « coupant » la surface du buffer par les limites du pays.

La zone d’implantation potentielle étant déterminée, on veut maintenant récupérer le potentiel énergétique présent dans cette surface.

On va utiliser l’outil « extraction par masque ».

On veut maintenant écarter, à l’intérieur de cette zone optimale pour l’injection, les zones où l’implantation ne pourra être autorisée (espaces protégés, …)
A partir de la couche déterminant ces espaces, on ne va sélectionner que les zones autorisées par l’outil « Sélectionner par attribut » (l’attribut correspondant est GRISCODE = 1).

Une fois ces espaces sélectionnés, on les exporte pour créer une couche des « zones possibles ».
On va découper notre buffer, contenant le potentiel énergétique, par les zones possibles avant d’y ajouter la quantité de TEP disponible.

- découpage des zones possibles par l’outil « extraction par masque ».

Attention, dans les paramètres à prendre en compte pour la dernière étape, on réduit la taille de la cellule à 1m, pour plus de précision.

- récupérer le potentiel énergétique disponible dans ces zones, là encore avec l’outil « extraction par masque ».
Les zones possédant le maximum de potentiel énergétique sont celles apparaissant en rouge/brun.
B. Application avec GRASS

1. Calcul du potentiel énergétique disponible sur le territoire – méthode manuelle

- Lancer GRASS GIS

1. Paramètres de départ

- Créer un nouveau secteur. (*Assistant de création de secteur*)

La création d’un nouveau secteur va permettre de définir le système de projection de la zone d’étude.
- Définition de la base de donnée de GRASS et du nom du secteur

- Choisir une méthode pour définir le système de coordonnées du projet

Connaissant le code EPSG de notre projet nous avons choisi la deuxième méthode (Sélectionner le code EPSG du système de coordonnées de référence)
- Choisir le code EPSG de la zone du projet
Dans le cadre de notre projet nous travaillons en **Lambert 93** ce qui correspond au code **EPSG 2154** car, depuis le décret n° 2000-1276 du 26 décembre 2000 modifié par le décret n°2006-272 du 3 mars 2006 a défini le nouveau système national de référence de coordonnées géographiques et impose aux services de l’État, aux collectivités locales et aux entreprises chargées de l’exécution d’une mission de service public de diffuser les données géographiques dans ce nouveau système au plus tard le 10 mars 2009. Pour la métropole, ce nouveau système est le système géodésique RGF93, ellipsoïde IAG GRS 1980, projection Lambert 93.

- Le secteur est maintenant paramétré
- Créer un nouveau jeu de cartes
- Sélectionner le jeu de données et démarrer GRASS

- Le gestionnaire des couches s’ouvre ainsi que la fenêtre d’affichage
2. Import de données vecteurs

Nous allons maintenant importer la couche du Pays de Fougères

Faire Fichier / Importer une carte vectorielle / Importer des formats standards [v.in.ogr]

- Cliquer sur Boîte de dialogue

- Renseigner dans Required :
 - la source : OGR datasource name
 - le nom du fichier de sortie : Nom de la couche vectorielle en sortie qui sera stockée dans le jeu de carte créé au démarrage de l’application

Nota : éviter les accents et les espaces

- Faire exécuter pour que la couche soit importée
- La couche a maintenant été importée, elle est visible dans le gestionnaire des couches

- Il faut maintenant paramétrer la vue sur la couche vecteur la plus grande. Clic droit sur la couche Définir la région calculée à partir de la couche sélectionnée

```
g.region vect=Pays_de_Pouqeres@Methanisation -p
projection: 99 (Lambert Conformal Conic)
zone: 0
datum: towgs84=0,0,0,0,0,0
ellipsoid: gss80
north: 6335496
south: 6797840
west: 355320.999999999
east: 400321
nres: 1
cols: 1
rows: 37656
cells: 1694520000
(Tue Feb 21 11:48:08 2012) Command finished (0 sec)
```
- Faire clic droit sur la couche et Zoomer sur la couche sélectionnée

3. Définir la résolution du projet

- Il faut maintenant définir la résolution à laquelle nous allons travailler pour paramétrer nos analyses rasteur sur ce projet pour cela aller dans Paramètres / Région / Définir la région

- Dans l’item Résolution on va paramétrer la Résolution de la grille en 2D à 100 pour qu’un pixel fasse 100 mètres sur 100.
4. Convertir le vecteur en rasteur

On va maintenant convertir le fichier vecteur de la couche des déchetteries en rasteur : Fichier / Conversions couches et volume / Vectorielle vers matricielle [v.to.rast]

Rentrer le nom de la couche en entrée et en sortie

- Choisir la source des valeurs des pixels du rasteur : Source of rasteur values

5 choix s’offrent à vous mais choisissez attr qui permet de sélectionner la valeur d’un champ de la table attributaire (défaut)

- Dans l’item Sélection choisir comme Feature Type : Point
- Dans l’item Attributes il faut sélectionner le champ correspondant à la valeur que l’on veut donner au pixel : Name og column for «attr» parameter. Dans notre cas nous allons choisir le champ TEP_2009

- Lancer la création du rasteur en cliquant sur exécuter
5. **Voisinage : Répartition du poids en TEP sur une distance maximum autour du point du substrat**

Pour faire cela nous allons utiliser une méthode d’analyse de voisinage qui se trouvent dans Matricielle / Analyse de voisinage / Fenêtre mouvante [r.neighbors]

Cette fonction permet de calculer une valeur de tep pour chaque cellule en fonction de la distance de collecte et des valeurs de tep des pixels de substrats.

Dans Neighborhood, il faut :
- cocher Use circular neighborhood
- choisir l’Opération sur le voisinage et prendre SUM
- définir la Taille du voisinage qui correspond au diamètre maximal de collecte

Nota : pour la taille il faut utiliser une valeur impair et un entier par exemple ici nous avons mis 191 pour un diamètre de 19 Km normalement (191*100 pixels =19 100 mètres)

- Pour lancer le traitement faire Exécuter
- Voici le résultat du traitement
6. Distance entre les points de substrat

- Aller dans Matrice / Analyse de terrain / Distance d’un objet [r.grow.distance]

- Donner le Nom de la couche matricielle d’entrée

Dans l’item Optionnel donner le nom de la couche en sortie et laisser le paramètre Métrique en Euclidean

- Faire Exécuter pour terminer
7. Pondération en fonction de la distance

On va ici utiliser la calculatrice rasteur : Rasteur Map Calculator

- Pour cela aller dans : Matricielle /Calculatrice matricielle [r.mapcalc]

- On donne le nom de la couche en sortie

On utilise la formule nous permettant de pondérer la distance : \(Y = (-0.5/D_{\text{max}}) \times X + 1 \)

- Faire Exécuter pour terminer
8. Calcul de la quantité de TEP produite par substrat pondérée par la distance

On va également utiliser la calculatrice rasteur pour ce calcul : Rasteur Map Calculator

- Ici on va simplement multiplier la couche de voisinage produite dans la partie 5 et la couche de pondération de la distance réalisée dans la partie précédente

- Faire Exécuter pour terminer
10. Calcul de la quantité de TEP produite sur le territoire de Fougères

On va réutiliser la calculatrice rasteur pour ce calcul : Rasteur Map Calculator

- On va ici additionner les rasteurs obtenus pour chacun des substrats pour obtenir le potentiel énergétique disponible sur l’ensemble du territoire

- Faire Exécuter pour terminer
2. Calcul du potentiel énergétique disponible sur le territoire — méthode automatisée par script SHELL

dossier_shape = "Z:/Desktop/SUBSTRATS" # on indique le répertoire des fichiers shape
cd $dossier_shape # on se déplace dans ce dossier

#------------------------------- PAYS DE FOUGERES -----------------------------#

v.in.ogr -o --overwrite dsn=PAYS_FOUGERES.shp output=PAYS_FOUGERES
ge.region vect=PAYS_FOUGERES -p
ge.region res=100

#------------------------------- DECHETTERIES -----------------------------#
v.in.ogr -o --overwrite dsn=DECHETTERIES_POINT.shp output=DECHETTERIES_POINT
v.to.rast --overwrite input=DECHETTERIES_POINT type=point output=DECHETTERIES_POINT_RASTEUR use=attr column=TEP value=1
rows=4096
r.neighbors -c --overwrite input=DECHETTERIES_POINT_RASTEUR output=DECHETTERIES_POINT_RASTEUR_NEIGHBORS method=sum size=195
r.grow.distance --overwrite input=DECHETTERIES_POINT_RASTEUR distance=DIST_DECHETTERIES_POINT_RASTEUR metric=euclidean
r.mapcalculator --overwrite amap=DIST_DECHETTERIES_POINT_RASTEUR formula=1-0.5/9705*A outfile=POND_DIST_DECHETTERIES_POINT_RASTEUR
r.mapcalculator --overwrite amap=POND_DIST_DECHETTERIES_POINT_RASTEUR bmap=DECHETTERIES_POINT_RASTEUR_NEIGHBORS formula=A*B outfile=RESULTAT_DECHETTERIES

#------------------------------- ELEVAGES BOVINS -----------------------------#
v.in.ogr -o --overwrite dsn=ELEVAGES_BOVINS_POINT.shp output=ELEVAGES_BOVINS_POINT
v.to.rast --overwrite input=ELEVAGES_BOVINS_POINT type=point output=ELEVAGES_BOVINS_POINT_RASTEUR use=attr column=TEP value=1 rows=4096
r.neighbors -c --overwrite input=ELEVAGES_BOVINS_POINT_RASTEUR output=ELEVAGES_BOVINS_POINT_RASTEUR_NEIGHBORS method=sum size=95
r.grow.distance --overwrite input=ELEVAGES_BOVINS_POINT_RASTEUR distance=DIST_ELEVAGES_BOVINS_POINT_RASTEUR metric=euclidean
r.mapcalculator --overwrite amap=DIST_ELEVAGES_BOVINS_POINT_RASTEUR formula=1-0.5/4750*A outfile=POND_DIST_ELEVAGES_BOVINS_POINT_RASTEUR
r.mapcalculator --overwrite amap=POND_DIST_ELEVAGES_BOVINS_POINT_RASTEUR bmap=ELEVAGES_BOVINS_POINT_RASTEUR_NEIGHBORS formula=A*B outfile=RESULTAT_ELEVAGES_BOVINS

#------------------------------- ELEVAGES PORCINS -----------------------------#
v.in.ogr -o --overwrite dsn=ELEVAGES_PORCINS_POINT.shp output=ELEVAGES_PORCINS_POINT
v.to.rast --overwrite input=ELEVAGES_PORCINS_POINT type=point output=ELEVAGES_PORCINS_POINT_RASTEUR use=attr column=TEP value=1 rows=4096
r.neighbors -c --overwrite input=ELEVAGES_PORCINS_POINT_RASTEUR output=ELEVAGES_PORCINS_POINT_RASTEUR_NEIGHBORS method=sum size=27
r.grow.distance --overwrite input=ELEVAGES_PORCINS_POINT_RASTEUR distance=DIST_ELEVAGES_PORCINS_POINT_RASTEUR metric=euclidean
r.mapcalculator --overwrite amap=DIST_ELEVAGES_PORCINS_POINT_RASTEUR formula=1-0.5/1375*A outfile=POND_DIST_ELEVAGES_PORCINS_POINT_RASTEUR
r.mapcalculator --overwrite amap=POND_DIST_ELEVAGES_PORCINS_POINT_RASTEUR bmap=ELEVAGES_PORCINS_POINT_RASTEUR_NEIGHBORS formula=A*B outfile=RESULTAT_ELEVAGES_PORCINS

#------------------------------- ECOLES_PF_RESTAURATION -----------------------------#
v.in.ogr -o --overwrite dsn=ECOLES_PF_RESTAURATION_POINT.shp output=ECOLES_PF_RESTAURATION_POINT
v.to.rast --overwrite input=ECOLES_PF_RESTAURATION_POINT type=point output=ECOLES_PF_RESTAURATION_POINT_RASTEUR use=attr column=TEP value=1 rows=4096
r.neighbors -c --overwrite input=ECOLES_PF_RESTAURATION_POINT_RASTEUR output=ECOLES_PF_RESTAURATION_POINT_RASTEUR_NEIGHBORS method=sum size=1105
r.grow.distance --overwrite input=ECOLES_PF_RESTAURATION_POINT_RASTEUR distance=DIST_ECOLES_PF_RESTAURATION_POINT_RASTEUR metric=euclidean
r.mapcalculator --overwrite amap=DIST_ECOLES_PF_RESTAURATION_POINT_RASTEUR formula=1-0.5/55250*A outfile=POND_DIST_ECOLES_PF_RESTAURATION_POINT_RASTEUR
r.mapcalculator --overwrite amap=POND_DIST_ECOLES_PF_RESTAURATION_POINT_RASTEUR bmap=ECOLES_PF_RESTAURATION_POINT_RASTEUR_NEIGHBORS formula=A*B outfile=RESULTAT_ECOLES_PF_RESTAURATION

#------------------------------- HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION -----------------------------#
v.in.ogr -o --overwrite dsn=HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION_POINT.shp output=HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION_POINT
v.to.rast --overwrite input=HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION_POINT type=point output=HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION_POINT_RASTEUR use=attr column=TEP value=1 rows=4096

83
r.neighbors -c --overwrite input=HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION_POINT_RASTEUR output=HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION_POINT_RASTEUR_NEIGHBORS method=sum size=1105
r.grow.distance --overwrite input=HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION_POINT_RASTEUR distance=DIST_HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION_POINT_RASTEUR metric=euclidean
r.mapcalculator --overwrite amap=DIST_HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION_POINT_RASTEUR formula=1-0.5/55250*A outfile=POND_DIST_HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION_POINT_RASTEUR
r.mapcalculator --overwrite amap=POND_DIST_HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION_POINT_RASTEUR bmap=HOPITAUX_MAISONS_DE_RETRAITES_RESTAURATION_POINT_RASTEUR_NEIGHBORS formula=A*B outfile=RESULTAT_HOPITAUX_MAISONS_DE_RETRAITES

v.in.ogr -o --overwrite dsn=IAA_GROUPE_1_POINT.shp output=IAA_GROUPE_1_POINT
v.to.rast --overwrite input=IAA_GROUPE_1_POINT type=point output=IAA_GROUPE_1_POINT_RASTEUR use=attr column=TEP value=1 rows=4096
r.neighbors -c --overwrite input=IAA_GROUPE_1_POINT_RASTEUR output=IAA_GROUPE_1_POINT_RASTEUR_NEIGHBORS method=sum size=989
r.grow.distance --overwrite input=IAA_GROUPE_1_POINT_RASTEUR distance=DIST_IAA_GROUPE_1_POINT_RASTEUR metric=euclidean
r.mapcalculator --overwrite amap=DIST_IAA_GROUPE_1_POINT_RASTEUR formula=1-0.5/49450*A outfile=POND_DIST_IAA_GROUPE_1_POINT_RASTEUR
r.mapcalculator --overwrite amap=POND_DIST_IAA_GROUPE_1_POINT_RASTEUR bmap=IAA_GROUPE_1_POINT_RASTEUR_NEIGHBORS formula=A*B outfile=RESULTAT_IAA1

v.in.ogr -o --overwrite dsn=IAA_GROUPE_2_POINT.shp output=IAA_GROUPE_2_POINT
v.to.rast --overwrite input=IAA_GROUPE_2_POINT type=point output=IAA_GROUPE_2_POINT_RASTEUR use=attr column=TEP value=1 rows=4096
r.neighbors -c --overwrite input=IAA_GROUPE_2_POINT_RASTEUR output=IAA_GROUPE_2_POINT_RASTEUR_NEIGHBORS method=sum size=245
r.grow.distance --overwrite input=IAA_GROUPE_2_POINT_RASTEUR distance=DIST_IAA_GROUPE_2_POINT_RASTEUR metric=euclidean
r.mapcalculator --overwrite amap=DIST_IAA_GROUPE_2_POINT_RASTEUR formula=1-0.5/12290*A outfile=POND_DIST_IAA_GROUPE_2_POINT_RASTEUR
r.mapcalculator --overwrite amap=POND_DIST_IAA_GROUPE_2_POINT_RASTEUR bmap=IAA_GROUPE_2_POINT_RASTEUR_NEIGHBORS formula=A*B outfile=RESULTAT_IAA2

v.in.ogr -o --overwrite dsn=IAA_GROUPE_3_POINT.shp output=IAA_GROUPE_3_POINT
v.to.rast --overwrite input=IAA_GROUPE_3_POINT type=point output=IAA_GROUPE_3_POINT_RASTEUR use=attr column=TEP value=1 rows=4096
r.neighbors -c --overwrite input=IAA_GROUPE_3_POINT_RASTEUR output=IAA_GROUPE_3_POINT_RASTEUR_NEIGHBORS method=sum size=37
r.grow.distance --overwrite input=IAA_GROUPE_3_POINT_RASTEUR distance=DIST_IAA_GROUPE_3_POINT_RASTEUR metric=euclidean
r.mapcalculator --overwrite amap=DIST_IAA_GROUPE_3_POINT_RASTEUR formula=1-0.5/1805*A outfile=POND_DIST_IAA_GROUPE_3_POINT_RASTEUR
r.mapcalculator --overwrite amap=POND_DIST_IAA_GROUPE_3_POINT_RASTEUR bmap=IAA_GROUPE_3_POINT_RASTEUR_NEIGHBORS formula=A*B outfile=RESULTAT_IAA3

v.in.ogr -o --overwrite dsn=RESIDUS_DE_CULTURES_2009_POINT_MAIS.shp output=RESIDUS_DE_CULTURES_2009_POINT use=attr column=TEP value=1 rows=4096
r.neighbors -c --overwrite input=RESIDUS_DE_CULTURES_2009_POINT_RASTEUR output=RESIDUS_DE_CULTURES_2009_POINT_RASTEUR_NEIGHBORS method=sum size=1101
r.grow.distance --overwrite input=RESIDUS_DE_CULTURES_2009_POINT_RASTEUR distance=DIST_RESIDUS_DE_CULTURES_2009_POINT_RASTEUR metric=euclidean
r.mapcalculator --overwrite amap=DIST_RESIDUS_DE_CULTURES_2009_POINT_RASTEUR formula=1-0.5/55050*A outfile=POND_RESIDUS_DE_CULTURES_2009_POINT_RASTEUR
r.mapcalculator --overwrite amap=POND_RESIDUS_DE_CULTURES_2009_POINT_RASTEUR bmap=RESIDUS_DE_CULTURES_2009_POINT_RASTEUR_NEIGHBORS formula=A*B outfile=RESULTAT_RESIDUS DE_CULTURES

r.series --overwrite input=RESULTAT_DECHETTERIES,RESULTAT_ECOLES,RESULTAT_ELEVAGES_BOVINS,RESULTAT_ELEVAGES_PORCINS,RESULTAT_HOPITAUX_MAISONS_DE_RETRAITES,RESULTAT_IAA1,RESULTAT_IAA2,RESULTAT_IAA3,RESULTAT_RESIDUS_DE_CULTURES output=Resultat_potentiel method=sum
3. Calcul du potentiel énergétique disponible 1 Km autour du réseau de transport – méthode manuelle

1. Import du réseau de gaz

- Renseigner dans Required :
 - la source : OGR datasource name
 - le nom du fichier de sortie : Nom de la couche vectorielle en sortie qui sera stockée dans le jeu de carte créé au démarrage de l’application

Nota : éviter les accents et les espaces

- Faire exécuter pour que la couche soit importée
2. Création d’une zone tampon autour du réseau de gaz

- Dans les requis renseigner :
- la couche sur lequel on va réaliser la zone tampon
- le fichier de sortie

- Donner la distance de la zone tampon en mètre

- Faire exécuter pour créer la zone tampon
3. Découper la zone tampon

- Dans les requis renseigner :
- la couche à découper et la couche de découpage
- le fichier de sortie

- On choisit l’opérateur « AND » pour réaliser l’intersection

- Faire exécuter pour créer la zone tampon
4. On redéfinit la zone d’étude

On choisit le fichier sur lequel on va ajuster l’emprise, en prenant le fichier de zone tampon.

- On choisit la résolution à un mètre
- Faire exécuter pour modifier l’étendue
5. Convertir la zone tampon en rasteur

Dans les requis renseigner :
- en fichier d’entrée la zone tampon réalisée précédemment
- le fichier de sortie
- la source de la valeur du rasteur, ici on choisit « val » puisqu’on va renseigner la valeur 1 à tout le rasteur

- On attribue la valeur 1 comme « val »

- Faire exécuter créer le rasteur
6. Croiser la zone tampon avec le résultat du potentiel énergétique

On va maintenant récupérer la valeur du potentiel énergétique dans la zone tampon en multipliant le rasteur donnant le potentiel énergétique du Pays de Fougères avec le rasteur de la zone tampon possédant la valeur : 1

- Dans l’expression il faut multiplier les deux rasteurs et donner le nom du fichier de sortie

- Faire exécuter créer le rasteur
7. Importation de l’analyse multicritères donnant les zones d’implantation possible (1) et impossible (0)

On va importer le rasteur d’analyse multicritère réalisé par F. Boret en 2011

- Choisir le fichier source

- Donner le format du chier source : Erdas Imagine Images (.img)

- Faire importer
8. Création du rasteur croisant potentiel énergétique autour du réseau de gaz et analyse multicritères

Il nous faut pour terminer l’analyse multiplier le rasteur donnant le potentiel énergétique autour du réseau de gaz avec le rasteur de l’analyse multicritères

- Dans l’expression il faut multiplier les deux rasteurs et donner le nom du fichier de sortie

- Faire exécuter créer le rasteur
4. Calcul du potentiel énergétique disponible 1 Km autour du réseau de transport – méthode automatisée par script SHELL

dossier_shape="Z:/Desktop/SUBSTRATS" # on indique le répertoire des fichiers shape
cd $dossier_shape # on se déplace dans ce dossier

RESEAU DE GAZ
v.in.ogr --overwrite dsn=Reseau_de_gaz.shp output=Reseau_de_gaz
v.buffer --overwrite input=Reseau_de_gaz output=RG_buffer type=line distance=1000
v.overlay --overwrite ainput=RG_buffer binput=PAYS_FOUGERES output=RG_CLIP operator=and
g.region vect=RG_CLIP -p
g.region res=1
r.resample input=Resultat_final@test output=Potentiel

v.to.rast --overwrite input=RG_CLIP type=area output=RG_CLIP_RASTEUR use=val
r.mapcalculator --overwrite amap=Potentiel bmap=RG_CLIP_RASTEUR formula=A*B outfile=Resultat_reseau

CONTRAINTE
r.in.gdal input=analyse_multicriteres.img output=analyse_multicriteres --overwrite
r.mapcalculator --overwrite amap=Resultat_reseau bmap=analyse_multicriteres formula=A*B outfile=Resultat_contrainte
C. Méthodologie d'analyse réseau avec Network Analyst (ArcGIS)

Cette analyse a pour objectif de rechercher les 3 emplacements les plus favorables à l'accueil d'une unité de méthanisation par rapport au réseau routier, une distance de proximité au réseau de gaz, la distance de collecte maximale des substrats et à la pondération des points de collecte.

1 - Nettoyage de la couche des routes de la BD TOPO (adapté de : Boret, 2011)
Dans un premier temps il faut modéliser le réseau routier. Il est nécessaire de formater la couche des routes issue de la BD TOPO qui est à notre disposition afin de la rendre compatible et pertinente pour notre analyse.
Pour cela nous avons d'abord supprimé les entités qui ne sont pas pertinentes pour l'analyse (pistes cyclables, routes empierrée chemin, sentier, escaliers).
Ensuite il faut renseigner le sens de circulation des routes, celui-ci est présent dans le champ "sens" de la BD TOPO cependant nous allons créer un champ "ONEWAY" à partir des valeurs de la BD TOPO pour plusieurs raisons. Premièrement car cette dénomination de champ sera automatiquement reconnu lors de la modélisation du réseau mais aussi car nous allons considérer que les valeurs de sens "NC" de la BD TOPO sont en double sens dans ONEWAY car beaucoup d'éléments comprenaient cette valeur et qu'il est plus probable que ces éléments soient en double sens.
Il faut aussi déterminer la hiérarchie des routes, le champ "IMPORTANCE" de la BD TOPO correspond à une hiérarchisation des routes. Cependant nous allons créer un champ "HIERARCHIE" en y dupliquant le champ de la BD TOPO mais au format de valeurs de type "entier" pour que ce champ soit interprétable par l'analyse.
La distance de chaque tronçon de route doit aussi être calculée dans un champ (appelé "LONG") afin de pouvoir calculer les distance entre l'unité de méthanisation et les points de collecte.
Enfin nous pouvons créer le jeu de donnée réseau, pour cela il faut aller dans la fenêtre ArcCatalog et cliquer-droit sur la couche de route nettoyée puis "New network dataset". Différentes fenêtres de paramétrages sont à compléter pour finaliser la modélisation du réseau.

2 - Méthode d'optimisation de la part de marché (Analyse emplacement-allocation de Network Analyst)

Cette méthode semble la plus appropriée car elle offre la possibilité de prendre en compte les paramètres de pondération que l'on souhaite appliquer à notre analyse c'est à dire le potentiel énergétique des points de collecte ainsi que la distance maximale de collecte.
Une fois le réseau modélisé nous pouvons créer une couche "Location-Allocation" qui va servir de base à notre analyse (Network Analyst® -> new Location-allocation).

A partir de cette couche nous allons ajouter les emplacements potentiels "Facilities" en faisant un clic-droit et "Load-location", nous conserverons la distance d'accroche des points au réseau par défaut (1000 m), puis Ok. Ceux-ci sont représentés par une grille de points réalisée au préalable, dont les zones non implantables ont été retirées et qui recouvre l'ensemble de la zone d'étude. Cette grille de points servira donc de "support" pour caractériser l'emplacement idéal.

Ensuite nous allons charger les emplacements des différents points de collecte "Demand Points". La manipulation est la même que précédemment, cependant c'est dans la boîte de dialogue "Load-location" des points de collecte que nous allons paramétrer les pondérations. Pour cela il suffit de sélectionner le champs TEP pour le poids et de mettre 0 en valeurs par défaut afin que les valeurs nulles n'aient pas d'influences sur l'analyse. Enfin on sélectionnera le champs Distance_M pour la propriété "Cutoff_Long" afin de prendre en compte les distances de collecte dans l'analyse.
Liste des substrats pris en compte :
- Déchetteries
- Restauration Ecoles
- Restauration maisons de retraite
- Elevages de bovins
- Elevages de porcins
- Résidus de cultures (Mais grain)
- Industries agro-alimentaire

Cette manipulation est à effectuer pour chaque point de collecte. Une fois tous les points de collectes paramétrés il faut configurer l’analyse. En cliquant-droit sur la couche "Location-allocation" on accède aux propriétés de l'analyse.

Dans Advanced Setting, nous choisirons donc la méthode "Maximize Market Share" et dans les paramètres d'analyse on choisira le champs "LONG" pour l’impédance et "Oneway" en restriction.
Une fois l’analyse paramétrée on peut lancer le traitement en cliquant sur le bouton "solve".
Résultat de l'analyse :

 Nous avons ensuite cherché à prendre en compte ce premier résultat afin de trouver d'autres emplacements potentiels. Pour commencer nous avons testé en excluant la commune qui accueille le premier site trouvé lors de la première analyse. C'est à dire que l'analyse va être relancée en ayant supprimé de la grille de points la zone correspondant à la commune accueillant le premier site. Et ainsi de suite pour autant de sites que l'on souhaite déterminer.

3 - Automatisation de l'analyse

Nous avons ensuite cherché à prendre en compte ce premier résultat afin de trouver d'autres emplacements potentiels. Pour commencer nous avons testé en excluant la commune qui accueille le premier site trouvé lors de la première analyse. C'est à dire que l'analyse va être relancée en ayant supprimé de la grille de points la zone correspondant à la commune accueillant le premier site. Et ainsi de suite pour autant de sites que l'on souhaite déterminer.
Pour cela nous avons décidé d'automatiser les traitements grâce à un model builder afin de gagner du temps sur le paramétrage l'enchainement des tâches de l'analyse.

Ce model builder est donc paramétré pour effectuer dans un premier temps (1) la même analyse qui a permis d'aboutir au résultat ci-dessus.

Suite (2) le site potentiel déterminé par l'analyse est sélectionné et extrait de la couche "location-allocation" vers une couche ne contenant que le site potentiel. Puis (3) la commune contenant le site est sélectionnée et extraite elle aussi pour finir servir à découper la grille de points initiale. Ce qui permet d'obtenir une nouvelle grille avec une zone "exclue" afin de relancer l'analyse pour trouver le meilleur site potentiel suivant.

Ce model permet ainsi de déterminer de manière automatisée les 3 meilleurs emplacements potentiels de manière hiérarchique.
Cette méthode étant fonctionnelle, nous pourrons ainsi l'adapter afin de prendre en compte la proximité du réseau de gaz. En effet, il paraît plus pertinent de rechercher un site potentiel proche du réseau de gaz afin d'en faciliter l'injection et de limiter les coûts de raccordement au réseau. Cette méthode permettra ainsi de déterminer un certain nombre de sites potentiels en y ajoutant la contrainte de proximité au réseau de gaz.

4 - Prise en compte de la proximité au réseau de gaz dans l'analyse

Nous allons maintenant chercher à prendre en compte la proximité au réseau de gaz dans le traitement automatique, l'objectif étant toujours de trouver les meilleurs sites potentiels de façon hiérarchique. Mais cette fois en intégrant l'idée de facilitation d'injection dans le réseau de gaz et de limitation des coûts de raccordement au réseau en imposant une distance maximale d'implantation autour du réseau de gaz. Pour cela nous avons intégré de nouveaux paramètres à notre modèle automatisé, permettant ainsi de prendre en compte la proximité au réseau de gaz.
Nous reprenons ainsi le modèle précédant en y ajoutant une étape et en modifiant une fonctionnalité.

La première modification (1) consiste en l'ajout d'une étape. C'est ici que l'on va déterminer au préalable la distance maximale d'implantation autour du réseau de gaz (1 Km de rayon). Ceci via un buffer autour du réseau de gaz qui servira à découper la grille de points pour ne garder que les points inclus dans la zone désirée.

La chaîne de traitement (2) reprend simplement l'analyse location-allocation (chargement des points de la grille et des points de collecte puis résolution du calcul).

Ensuite (3) le site potentiel déterminé par l'analyse est sélectionné et extrait de la couches "location-allocation" vers une couche ne contenant que le site potentiel.

Enfin une modification est faite à l'étape (4), cette fois un buffer de 2 Km est créé autour du site potentiel (à la place de la sélection de la commune contenant le site). Celui-ci va remplacer la commune pour servir à découper la grille de points initiale de manière plus pertinente. Ce qui permet d'obtenir une nouvelle grille de points potentiels avec une zone "exclue" afin de relancer l'analyse pour trouver le meilleur site potentiel suivant.

Ce modèle permet cette fois de déterminer de manière automatisée les 3 meilleurs emplacements potentiels de manière hiérarchique. Ceci en prenant en compte tout les paramètres souhaités pour l'implantation, c'est à dire le réseau routier, la distance de proximité au réseau de gaz, la distance de collecte maximale des substrats et à la pondération des points de collecte.
Résultat de l’analyse finale :
Résumé
Actuellement en France, la méthanisation des déchets organiques connaît un développement important. Sur la majorité des installations, le biogaz produit est valorisé par cogénération, produisant de l’électricité et de la chaleur. Cependant, la publication récente au journal officiel d’un décret autorisant l’injection de biométhane dans le réseau de gaz naturel français ouvre de nouvelles perspectives pour la valorisation du biogaz. Dans ce cadre, un Système d’Information Géographique (SIG) a été utilisé pour déterminer les secteurs potentiellement favorables à l’implantation d’une unité de méthanisation sur le territoire « test » du Pays de Fougères (35). Pour cela nous avons mis en place une méthodologie reproductible pour d’autres territoires avec l’outil libre GRASS GIS et l’outil propriétaire ArcGIS. Un potentiel énergétique d’environ 8000 tep/an a ainsi été identifié sur ce territoire « test », correspondant à sa consommation minimale en gaz naturel sur une année. L’étude a permis d’identifier plusieurs sites adaptés à l’implantation d’une unité de méthanisation dans le but d’injected le biométhane dans le réseau de gaz naturel, ce qui montre que la méthodologie développée est un outil adapté pour faciliter la prise de décision.

Mots clés : SIG, analyse spatiale, analyse réseau, méthanisation, injection, sites potentiels
Logiciels utilisés : GRASS GIS, ArcGIS 10 (avec les extensions : Spatial Analyst, Network Analyst et Model Builder)

Abstract
Anaerobic digestion (AD) of organic waste is currently developing in France. For most of the existing plants, the resulting biogas is used to produce a renewable energy in combined heat and power energy gas engines. However, a recent decree allowing the injection of biogas in the French natural gas grid offers new opportunities to produce energy from biogas. In this context, a Geographic Information System (GIS) has been used in order to determine the most suitable sites for the implantation of an AD plant in the territory of Pays de Fougères (Brittany, France). In this purpose, a reproducible protocol has been created with the free software GRASS GIS and also with the proprietary software ArcGIS, that could be applied to other territories. A 8000 tons of oil equivalent per year (toe/yr) energy potential was identified in the area of study, amounting to the minimal consumption of natural gas over one year in the Pays de Fougères. This study made it possible to identify several fitting places for the sitting of AD units in order to inject biogas into the natural gas grid, thus showing that the developed methodology is a suitable tool to help decision-making process concerning such AD projects.

Keywords : GIS, spatial analysis, network analysis, anaerobic digestion, injection, prospective sites.
Software used : GRASS GIS, ArcGIS 10 (with its extensions : Spatial Analyst, NetWork Analyst and Model Builder)